Exemplo n.º 1
0
def log_class_prediction_error_chart(classifier,
                                     X_train,
                                     X_test,
                                     y_train,
                                     y_test,
                                     experiment=None):
    """Log class prediction error chart.

    Make sure you created an experiment by using ``neptune.create_experiment()`` before you use this method.

    Tip:
        Check `Neptune documentation <https://docs.neptune.ai/integrations/scikit_learn.html>`_ for the full example.

    Args:
        classifier (:obj:`classifier`):
            | Fitted sklearn classifier object
        X_train (:obj:`ndarray`):
            | Training data matrix
        X_test (:obj:`ndarray`):
            | Testing data matrix
        y_train (:obj:`ndarray`):
            | The classification target for training
        y_test (:obj:`ndarray`):
            | The classification target for testing
        experiment (:obj:`neptune.experiments.Experiment`, optional, default is ``None``):
            | Neptune ``Experiment`` object to control to which experiment you log the data.
            | If ``None``, log to currently active, and most recent experiment.

    Returns:
        ``None``

    Examples:
        .. code:: python3

            rfc = RandomForestClassifier()
            rfc.fit(X_train, y_train)

            neptune.init('my_workspace/my_project')
            exp = neptune.create_experiment()

            log_class_prediction_error_chart(rfc, X_train, X_test, y_train, y_test, experiment=exp)
    """
    assert is_classifier(
        classifier), 'classifier should be sklearn classifier.'
    exp = _validate_experiment(experiment)

    try:
        fig, ax = plt.subplots()
        visualizer = ClassPredictionError(classifier, is_fitted=True, ax=ax)
        visualizer.fit(X_train, y_train)
        visualizer.score(X_test, y_test)
        visualizer.finalize()
        exp.log_image('charts_sklearn',
                      fig,
                      image_name='Class Prediction Error')
        plt.close(fig)
    except Exception as e:
        print('Did not log Class Prediction Error chart. Error {}'.format(e))
Exemplo n.º 2
0
def create_class_prediction_error_chart(classifier, X_train, X_test, y_train,
                                        y_test):
    """Create class prediction error chart.

    Tip:
        Check Sklearn-Neptune integration
        `documentation <https://docs-beta.neptune.ai/essentials/integrations/machine-learning-frameworks/sklearn>`_
        for the full example.

    Args:
        classifier (:obj:`classifier`):
            | Fitted sklearn classifier object
        X_train (:obj:`ndarray`):
            | Training data matrix
        X_test (:obj:`ndarray`):
            | Testing data matrix
        y_train (:obj:`ndarray`):
            | The classification target for training
        y_test (:obj:`ndarray`):
            | The classification target for testing

    Returns:
        ``neptune.types.File`` object that you can assign to run's ``base_namespace``.

    Examples:
        .. code:: python3

            import neptune.new.integrations.sklearn as npt_utils

            rfc = RandomForestClassifier()
            rfc.fit(X_train, y_train)

            run = neptune.init(project='my_workspace/my_project')
            run['visuals/class_prediction_error'] = \
                npt_utils.create_class_prediction_error_chart(rfc, X_train, X_test, y_train, y_test)
    """
    assert is_classifier(
        classifier), 'classifier should be sklearn classifier.'

    chart = None

    try:
        fig, ax = plt.subplots()
        visualizer = ClassPredictionError(classifier, is_fitted=True, ax=ax)
        visualizer.fit(X_train, y_train)
        visualizer.score(X_test, y_test)
        visualizer.finalize()
        chart = neptune.types.File.as_image(fig)
        plt.close(fig)
    except Exception as e:
        print('Did not log Class Prediction Error chart. Error {}'.format(e))

    return chart