Exemplo n.º 1
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=cfg.ohem_negpos_ratio)

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = CustomDataParallel(NetLoss(net, criterion))
    if args.cuda:
        net = net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        yolact_net.freeze_bn()  # Freeze bn so we don't kill our means
    yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
                losses = net(datum)

                losses = {k: (v).mean()
                          for k, v in losses.items()
                          }  # Mean here because Dataparallel
                loss = sum([losses[k] for k in losses])

                # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                # all_loss = sum([v.mean() for v in losses.values()])

                # Backprop
                loss.backward(
                )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                if args.log:
                    precision = 5
                    loss_info = {
                        k: round(losses[k].item(), precision)
                        for k in losses
                    }
                    loss_info['T'] = round(loss.item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0
                                             )  # nvidia-smi is sloooow

                    log.log('train',
                            loss=loss_info,
                            epoch=epoch,
                            iter=iteration,
                            lr=round(cur_lr, 10),
                            elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(epoch, iteration, yolact_net,
                                           val_dataset,
                                           log if args.log else None)

        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset,
                               log if args.log else None)
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
Exemplo n.º 2
0
def main():
    parse_args()

    rospy.init_node('yolact_ros', anonymous=True)
    if args.config is not None:
        set_cfg(args.config)

    if args.config is None:
        model_path = SavePath.from_str(args.trained_model)
        # TODO: Bad practice? Probably want to do a name lookup instead.
        args.config = model_path.model_name + '_config'
        print('Config not specified. Parsed %s from the file name.\n' % args.config)
        set_cfg(args.config)

    if args.detect:
        cfg.eval_mask_branch = False

    if args.dataset is not None:
        set_dataset(args.dataset)

    with torch.no_grad():
        if not os.path.exists('results'):
            os.makedirs('results')

        if args.cuda:
            cudnn.benchmark = True
            cudnn.fastest = True
            torch.set_default_tensor_type('torch.cuda.FloatTensor')
        else:
            torch.set_default_tensor_type('torch.FloatTensor')

        if args.resume and not args.display:
            with open(args.ap_data_file, 'rb') as f:
                ap_data = pickle.load(f)
            calc_map(ap_data)
            exit()

        if args.image is None and args.video is None and args.images is None:
            dataset = COCODetection(cfg.dataset.valid_images, cfg.dataset.valid_info,
                                    transform=BaseTransform(), has_gt=cfg.dataset.has_gt)
            prep_coco_cats()
        else:
            dataset = None        

        print('Loading model...', end='')
        net = Yolact()
        net.load_weights(args.trained_model)
        net.eval()
        print(' Done.')

        if args.cuda:
            net = net.cuda()

        net.detect.use_fast_nms = True
        cfg.mask_proto_debug = False

        detect_ = DetectImg(net, dataset)

    try:
        rospy.spin()
    except KeyboardInterrupt:
        print("Shutting down")
    cv2.destroyAllWindows()
Exemplo n.º 3
0
            cudnn.benchmark = True
            cudnn.fastest = True
            torch.set_default_tensor_type('torch.cuda.FloatTensor')
        else:
            torch.set_default_tensor_type('torch.FloatTensor')

        if args.resume and not args.display:
            with open(args.ap_data_file, 'rb') as f:
                ap_data = pickle.load(f)
            calc_map(ap_data)
            exit()

        if args.image is None and args.video is None and args.images is None:
            dataset = COCODetection(cfg.dataset.valid_images,
                                    cfg.dataset.valid_info,
                                    transform=BaseTransform(),
                                    has_gt=cfg.dataset.has_gt)
            prep_coco_cats()
        else:
            dataset = None

        print('Loading model...', end='')
        net = Yolact()
        net.load_weights(args.trained_model)
        net.eval()
        print(' Done.')

        if args.cuda:
            net = net.cuda()

        net.detect.use_fast_nms = args.fast_nms
Exemplo n.º 4
0
        if args.cuda:
            cudnn.fastest = True
            torch.set_default_tensor_type('torch.cuda.FloatTensor')
        else:
            torch.set_default_tensor_type('torch.FloatTensor')

        if args.resume and not args.display:
            with open(args.ap_data_file, 'rb') as f:
                ap_data = pickle.load(f)
            calc_map(ap_data)
            exit()

        if args.image is None and args.video is None and args.images is None:
            dataset = COCODetection(cfg.dataset.valid_images, cfg.dataset.valid_info,
                                    transform=BaseTransform(), has_gt=cfg.dataset.has_gt)
            prep_coco_cats()
        else:
            dataset = None        

        print('Loading model...', end='')
        net = Yolact()
        net.load_weights(args.trained_model)
        net.eval()
        print(' Done.')

        if args.cuda:
            net = net.cuda()
        tstart = datetime.now()
        evaluate(net, dataset)
        tend = datetime.now()