Exemplo n.º 1
0
def video(args):
    global net_img_g, net_out_g, net_thread_start
    h, w = LPD.size

    if args.trt:  # tensorRT Inference can't in thread
        import numpy as np
        from yolo_modules.tensorrt_module import do_inference_wrapper
        from yolo_modules.tensorrt_module import get_engine_wrapper
        engine_wrapper = get_engine_wrapper(args.version)
        net_out_shape = (1, LPD.LP_slice_point[-1], h / 2**LPD.num_downsample,
                         w / 2**LPD.num_downsample)
    else:
        import mxnet
        # mx_resize = mxnet.image.ForceResizeAug((w, h), interp=2)  # not always available
        net = yolo_gluon.init_executor(LPD.export_file, (h, w), LPD.ctx[0])
        yolo_gluon.test_inference_rate(net, (1, 3, h, w),
                                       cycles=100,
                                       ctx=LPD.ctx[0])

    rospy.init_node("LP_Detection_Video_Node", anonymous=True)
    threading.Thread(target=_video_thread).start()
    net_thread_start = True
    while not rospy.is_shutdown():
        if 'img_g' not in globals() or img_g is None:
            print('Wait For Image')
            time.sleep(1.0)
            continue

        if not net_thread_start:
            time.sleep(0.01)
            continue
        try:
            net_start_time = time.time()  # tic
            net_img = img_g.copy()  # (480, 640, 3), np.float32
            net_img = cv2.resize(net_img, (w, h))  # (320, 512, 3)

            if args.trt:
                # if cuMemcpyHtoDAsync failed: invalid argument, check input image size
                trt_outputs = do_inference_wrapper(engine_wrapper, net_img)
                net_out = np.array(trt_outputs).reshape(
                    net_out_shape)  # list to np.array

            else:
                nd_img = yolo_gluon.cv_img_2_ndarray(
                    net_img, LPD.ctx[0])  #, mxnet_resize=mx_resize)
                net_out = net.forward(is_train=False, data=nd_img)[0]
                net_out[-1].wait_to_read()

            yolo_gluon.switch_print(time.time() - net_start_time,
                                    video_verbose)
            net_img_g = net_img
            net_out_g = net_out
            net_thread_start = False

        except Exception as e:
            print(global_variable.red)
            rospy.signal_shutdown('main_thread Error')
            print(e)
            print(global_variable.reset_color)
    sys.exit(0)
Exemplo n.º 2
0
    def __init__(self, args):
        # -------------------- Load args -------------------- #
        self.ctx = yolo_gluon.get_ctx(args.gpu)
        self.export_folder = os.path.join(args.version, 'export')

        # -------------------- Load network sprc. -------------------- #
        spec_path = os.path.join(args.version, 'spec.yaml')
        with open(spec_path) as f:
            spec = yaml.load(f)
        for key in spec:
            setattr(self, key, spec[key])
        self.all_anchors = nd.array(
            self.all_anchors)  # anchors in each pyramid layers
        self.num_class = len(self.classes)

        self._init_step()
        self._init_area()
        self._init_syxhw()

        self.version = args.version
        # -------------------- Load "Executor" !!! -------------------- #
        if args.mode in ['video', 'valid', 'valid_Nima']:
            self.trt = args.trt
            if args.trt:
                from yolo_modules.tensorrt_module import get_engine_wrapper
                self.net = get_engine_wrapper(args.version)

            else:
                self.net = yolo_gluon.init_executor(self.export_folder,
                                                    self.size,
                                                    self.ctx[0],
                                                    fp16=self.use_fp16)

            return

        # -------------------- Use gluon Block !!! -------------------- #
        # Export/Train/Render_And_Train
        self.record = args.record
        self._init_net(spec, args.weight)

        if args.mode in ['train', 'render_and_train']:
            self._init_train()
Exemplo n.º 3
0
Arquivo: YOLO.py Projeto: wushian/YOLO
    def __init__(self, args):
        # -------------------- Load args -------------------- #
        self.ctx = yolo_gluon.get_ctx(args.gpu)
        self.export_folder = os.path.join(args.version, 'export')

        # -------------------- Load network sprc. -------------------- #
        spec_path = os.path.join(args.version, 'spec.yaml')
        with open(spec_path) as f:
            spec = yaml.load(f)

        for key in spec:
            setattr(self, key, spec[key])

        self.all_anchors = nd.array(self.all_anchors)
        self.num_class = len(self.classes)

        self._init_step()
        self._init_area()
        self._init_syxhw()

        self.version = args.version
        # -------------------- Load "Executor" !!! -------------------- #
        if (args.mode == 'video' or args.mode == 'valid'
                or args.mode == 'valid_Nima'):

            self.net = yolo_gluon.init_executor(self.export_folder,
                                                self.size,
                                                self.ctx[0],
                                                fp16=self.use_fp16)

        # -------------------- Use gluon Block !!! -------------------- #
        elif (args.mode == 'export' or args.mode == 'train'
              or args.mode == 'render_and_train'):

            self.record = args.record
            self._init_net(spec, args.weight)

            if args.mode != 'export':
                self._init_train()
Exemplo n.º 4
0
LR = 0.001
batch_size = 100
record_step = 1000

num_init_features = 32
growth_rate = 12
block_config = [6, 12, 24]

area = size[1] / 2**(len(block_config) + 1)
score_weight = 0.1
class_weight = 1.0

export_file = args.version + '/export/'

if args.mode == 'video':
    executor = yolo_gluon.init_executor(export_file, size, ctx[0])
    bridge = CvBridge()
    rospy.init_node("OCR_node", anonymous=True)
    pub = rospy.Publisher('YOLO/OCR', String, queue_size=0)
    rospy.Subscriber('/YOLO/clipped_LP', Image, _image_callback)

    print('Image Topic: /YOLO/clipped_LP')
    print('checkpoint file: %s' % export_file)

    r = rospy.Rate(30)
    while not rospy.is_shutdown():
        r.sleep()

else:
    net = OCRDenseNet(num_init_features, growth_rate, block_config, classes=34)
    backup_dir = os.path.join(args.version, 'backup')
Exemplo n.º 5
0
    def video(self, record=False):
        LP_size = (int(380 * 1.05), int(160 * 1.05))
        pjct_6d = licence_plate_render.ProjectRectangle6D(*LP_size)

        self.net = yolo_gluon.init_executor(self.export_file,
                                            self.size,
                                            self.ctx[0],
                                            use_tensor_rt=self.tensorrt)
        '''
        self.net = mxnet.contrib.onnx.onnx2mx.import_to_gluon.import_to_gluon(
            'v1/export/onnx/out.onnx', self.ctx[0])
        '''
        # -------------------- ROS -------------------- #
        self.bridge = CvBridge()
        rospy.init_node("LP_Detection", anonymous=True)
        LP_pub = rospy.Publisher(self.pub_clipped_LP, Image, queue_size=0)
        ps_pub = rospy.Publisher(self.pub_LP, Float32MultiArray, queue_size=0)

        rospy.Subscriber(self.topic, Image, self._image_callback)
        #threading.Thread(target=self._get_frame).start()

        pose = Float32MultiArray()
        rate = rospy.Rate(100)
        print('Image Topic: %s' % self.topic)
        print('checkpoint file: %s' % self.export_file)

        # -------------------- video record -------------------- #
        if record:
            start_time = datetime.datetime.now().strftime("%m-%dx%H-%M")
            out_file = os.path.join('video', 'LPD_ % s.avi' % start_time)
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            v_size = (640, 480)
            video_out = cv2.VideoWriter(out_file, fourcc, 30, v_size)

        shape = (1, 3, 320, 512)
        #yolo_gluon.test_inference_rate(self.net, shape, cycles=100, ctx=mxnet.gpu(0))

        threading.Thread(target=self._net_thread).start()

        while not rospy.is_shutdown():
            if not hasattr(self, 'net_out') or \
               not hasattr(self, 'net_img'):
                rate.sleep()
                print('Wait For Net')
                continue

            img = self.net_img.copy()
            net_out = self.net_out.copy()
            pred = self.predict_LP(self.net_out)
            ps_pub.publish(pose)

            if pred[0] > LP_threshold:
                img, clipped_LP = pjct_6d.add_edges(img, pred[1:])
                clipped_LP = self.bridge.cv2_to_imgmsg(clipped_LP, 'bgr8')
                LP_pub.publish(clipped_LP)

            if self.show:
                cv2.imshow('img', img)
                cv2.waitKey(1)
            #video_out.write(ori_img)
            rate.sleep()