Exemplo n.º 1
0
Arquivo: YOLO.py Projeto: wushian/YOLO
    def _render_thread(self):
        h, w = self.size
        self.car_renderer = RenderCar(h,
                                      w,
                                      self.classes,
                                      self.ctx[0],
                                      pre_load=render_thread_pre_load)

        self.bg_iter_valid = yolo_gluon.load_background(
            'val', self.batch_size, h, w)

        bg_iter_train = yolo_gluon.load_background('train', self.batch_size, h,
                                                   w)

        self.labels = nd.array([0])

        while not self.shutdown_training:
            if self.rendering_done:
                #print('render done')
                time.sleep(0.01)
                continue

            # ready to render new images
            if (self.backward_counter % 10 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(bg_iter_train)
                bg = bg.as_in_context(self.ctx[0])

            # change an other batch of background
            self.imgs, self.labels = self.car_renderer.render(bg,
                                                              'train',
                                                              render_rate=0.5,
                                                              pascal_rate=0.2)

            self.rendering_done = True
Exemplo n.º 2
0
Arquivo: YOLO.py Projeto: wushian/YOLO
    def render_and_train(self):
        print(global_variable.green)
        print('Render And Train')
        print(global_variable.reset_color)
        # -------------------- show training image # --------------------

        self.batch_size = 1
        ax = yolo_cv.init_matplotlib_figure()

        h, w = self.size
        # -------------------- background -------------------- #
        self.bg_iter_valid = yolo_gluon.load_background(
            'val', self.batch_size, h, w)
        self.bg_iter_train = yolo_gluon.load_background(
            'train', self.batch_size, h, w)
        self.car_renderer = RenderCar(h,
                                      w,
                                      self.classes,
                                      self.ctx[0],
                                      pre_load=False)

        # -------------------- main loop -------------------- #
        while True:
            if (self.backward_counter % 10 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(self.bg_iter_train)
                bg = bg.as_in_context(self.ctx[0])

            # -------------------- render dataset -------------------- #
            imgs, labels = self.car_renderer.render(bg,
                                                    'train',
                                                    render_rate=0.5,
                                                    pascal_rate=0.1)

            batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
            car_batch_ys = yolo_gluon.split_render_data(labels, self.ctx)

            self._train_batch(batch_xs, car_bys=car_batch_ys)

            # -------------------- show training image # --------------------
            if self.use_fp16:
                img = img.astype('float32')

            img = yolo_gluon.batch_ndimg_2_cv2img(batch_xs[0])[0]
            img = yolo_cv.cv2_add_bbox(img,
                                       car_batch_ys[0][0, 0].asnumpy(),
                                       4,
                                       use_r=0)
            yolo_cv.matplotlib_show_img(ax, img)
            print(car_batch_ys[0][0])
            raw_input()
Exemplo n.º 3
0
    def render_and_train(self):
        print(global_variable.green)
        print('Render And Train')
        print(global_variable.reset_color)
        # -------------------- show training image # --------------------
        '''
        self.batch_size = 1
        ax = yolo_cv.init_matplotlib_figure()
        '''
        h, w = self.size
        bs = self.batch_size
        # -------------------- background -------------------- #
        self.bg_iter_valid = yolo_gluon.load_background('val', bs, h, w)
        self.bg_iter_train = yolo_gluon.load_background('train', bs, h, w)

        self.car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False)
        LP_generator = licence_plate_render.LPGenerator(h, w)

        # -------------------- main loop -------------------- #
        while True:
            if (self.backward_counter % 10 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(self.bg_iter_train)
                bg = bg.as_in_context(self.ctx[0])

            # -------------------- render dataset -------------------- #
            imgs, labels = self.car_renderer.render(
                bg, 'train', render_rate=0.5, pascal_rate=0.1)

            imgs, LP_labels = LP_generator.add(imgs, self.LP_r_max, add_rate=0.5)

            batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
            car_batch_ys = yolo_gluon.split_render_data(labels, self.ctx)
            LP_batch_ys = yolo_gluon.split_render_data(LP_labels, self.ctx)

            self._train_batch(batch_xs, car_batch_ys, LP_batch_ys)

            # -------------------- show training image # --------------------
            '''
Exemplo n.º 4
0
    def _train_or_valid(self, mode):
        print(global_variable.cyan)
        print(mode)
        print(global_variable.reset_color)
        if mode == 'val':
            self.batch_size = 1
            ax = yolo_cv.init_matplotlib_figure()
            # self.net = yolo_gluon.init_executor(
            #    self.export_file, self.size, self.ctx[0])

        # -------------------- background -------------------- #
        LP_generator = licence_plate_render.LPGenerator(*self.size)
        bg_iter = yolo_gluon.load_background(mode, self.batch_size, *self.size)

        # -------------------- main loop -------------------- #
        self.backward_counter = 0
        while True:
            if (self.backward_counter % 3 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(bg_iter)
                bg = bg.as_in_context(self.ctx[0]) / 255.

            # -------------------- render dataset -------------------- #
            imgs, labels = LP_generator.add(bg, self.LP_r_max, add_rate=0.5)

            if mode == 'train':
                batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
                batch_ys = yolo_gluon.split_render_data(labels, self.ctx)
                self._train_batch_LP(batch_xs, batch_ys)

            elif mode == 'val':
                batch_out = self.net(imgs)
                pred = self.predict_LP(batch_out)

                img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0]

                labels = labels.asnumpy()

                img, _ = LP_generator.project_rect_6d.add_edges(
                    img, labels[0, 0, 1:7])

                img, clipped_LP = LP_generator.project_rect_6d.add_edges(
                    img, pred[1:])

                yolo_cv.matplotlib_show_img(ax, img)
                print(labels)
                print(pred)
                raw_input('--------------------------------------------------')
Exemplo n.º 5
0
 def test_add(self, b):
     batch_iter = yolo_gluon.load_background('val', b, h, w)
     for batch in batch_iter:
         imgs = batch.data[0].as_in_context(ctx[0])  # b*RGB*w*h
         labels = batch.label[0].as_in_context(ctx[0])  # b*L*5
         #imgs = nd.zeros((b, 3, self.h, self.w), ctx=gpu(0))*0.5
         tic = time.time()
         imgs, labels = self.add(imgs / 255, labels)
         #print(time.time()-tic)
         for i, img in enumerate(imgs):
             R, G, B = img.transpose((1, 2, 0)).split(num_outputs=3,
                                                      axis=-1)
             img = nd.concat(B, G, R, dim=-1).asnumpy()
             print(labels[i])
             cv2.imshow('%d' % i, img)
         if cv2.waitKey(0) & 0xFF == ord('q'):
             break
Exemplo n.º 6
0
    def valid(self):
        print(global_variable.cyan)
        print('Valid')

        bs = 1  # batch size = 1
        h, w = self.size

        # init two matplotlib figures
        ax1 = yolo_cv.init_matplotlib_figure()
        ax2 = yolo_cv.init_matplotlib_figure()

        # init radar figure for vizualizing class distribution
        radar_prob = yolo_cv.RadarProb(self.num_class, self.classes)

        # init background, LP adder, car renderer
        BG_iter = yolo_gluon.load_background('val', bs, h, w)
        LP_generator = licence_plate_render.LPGenerator(h, w)
        car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False)

        for bg in BG_iter:
            # select background
            bg = bg.data[0].as_in_context(self.ctx[0])  # b*RGB*w*h
            # render images, type(imgs) = mxnet.ndarray
            imgs, labels = car_renderer.render(bg, 'valid', pascal_rate=0.5, render_rate=0.9)
            imgs, LP_labels = LP_generator.add(imgs, self.LP_r_max, add_rate=0.8)

            # return all_output[::-1], [LP_output]
            x1, x2, x3, LP_x = self.net.forward(is_train=False, data=imgs)
            outs = self.predict([x1, x2, x3])
            LP_outs = self.predict_LP([LP_x])

            # convert ndarray to np.array
            img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0]

            # draw licence plate border
            img, clipped_LP = LP_generator.project_rect_6d.add_edges(img, LP_outs[0, 1:])
            yolo_cv.matplotlib_show_img(ax2, clipped_LP)

            # draw car border
            img = yolo_cv.cv2_add_bbox(img, labels[0, 0].asnumpy(), 4, use_r=0)
            img = yolo_cv.cv2_add_bbox(img, outs[0], 5, use_r=0)
            yolo_cv.matplotlib_show_img(ax1, img)

            # vizualize class distribution
            radar_prob.plot(outs[0, 0], outs[0, -self.num_class:])
            raw_input('next')
Exemplo n.º 7
0
    def valid(self):
        print(global_variable.cyan)
        print('Valid')

        bs = 1
        h, w = self.size
        ax1 = yolo_cv.init_matplotlib_figure()
        radar_prob = yolo_cv.RadarProb(self.num_class, self.classes)

        BG_iter = yolo_gluon.load_background('val', bs, h, w)
        car_renderer = RenderCar(h,
                                 w,
                                 self.classes,
                                 self.ctx[0],
                                 pre_load=False)

        for bg in BG_iter:
            # -------------------- get image -------------------- #
            bg = bg.data[0].as_in_context(self.ctx[0])  # b*RGB*w*h
            imgs, labels = car_renderer.render(bg,
                                               'valid',
                                               pascal_rate=0.5,
                                               render_rate=0.9)

            # -------------------- predict -------------------- #
            net_out = self.net.forward(is_train=False, data=imgs)
            # net_out = [x1, x2, x3], which shapes are
            # (1L, 640L, 3L, 30L), (1L, 160L, 3L, 30L), (1L, 40L, 3L, 30L)
            outs = self.predict(net_out)

            # -------------------- show -------------------- #
            img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0]

            img = yolo_cv.cv2_add_bbox(img, labels[0, 0].asnumpy(), 4, use_r=0)
            img = yolo_cv.cv2_add_bbox(img, outs[0], 5, use_r=0)
            yolo_cv.matplotlib_show_img(ax1, img)

            radar_prob.plot3d(outs[0, 0], outs[0, -self.num_class:])
            raw_input('next')
Exemplo n.º 8
0
    trainer = gluon.Trainer(net.collect_params(), 'adam',
                            {'learning_rate': LR})

    log_dir = args.version + '/logs'
    summary_writer = SummaryWriter(logdir=log_dir, verbose=True)
    # prob, score  = net(nd.zeros((1,3,160,384), ctx=ctx[0]))
    # summary_writer.add_graph(get_feature)
    # print(prob.shape, score.shape)
    if not os.path.exists(backup_dir):
        os.makedirs(backup_dir)

    print(global_variable.cyan)
    print('OCR Render And Train')

    h, w = size
    bg_iter_train = yolo_gluon.load_background('train', batch_size, h, w)
    generator = licence_plate_render.LPGenerator(*size)

    while True:
        if (backward_counter % 10 == 0 or 'bg' not in locals()):
            bg = yolo_gluon.ImageIter_next_batch(bg_iter_train)
            bg = bg.as_in_context(ctx[0])

        imgs, labels = generator.render(bg)

        batch_xs = yolo_gluon.split_render_data(imgs, ctx)
        batch_ys = yolo_gluon.split_render_data(labels, ctx)

        train_the(batch_xs, batch_ys)
        #raw_input('next')
Exemplo n.º 9
0
    '''


def _deg_2_rad(deg):

    return deg * math.pi / 180.


_join = os.path.join

if __name__ == '__main__':
    ctx = [gpu(0)]
    h, w = 320, 512
    ax = yolo_cv.init_matplotlib_figure()

    bg_iter = yolo_gluon.load_background('val', 1, h, w)
    car_renderer = RenderCar(h, w, [[0, 0]], ctx[0], pre_load=False)
    LP_generator = licence_plate_render.LPGenerator(h, w)

    while True:
        bg = yolo_gluon.ImageIter_next_batch(bg_iter).as_in_context(ctx[0])
        imgs, labels = car_renderer.render(bg,
                                           'valid',
                                           render_rate=0.9,
                                           pascal_rate=0.5)
        L1 = labels[0, 0]

        imgs, L2 = LP_generator.add(imgs, [45, 60, 45])
        img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0]
        img = yolo_cv.cv2_add_bbox(img, L1.asnumpy(), 4)
        print(L2)