Exemplo n.º 1
0
def test_init_fake_dataseries():

    file_list = [f"fake_data_file_{str(i).zfill(4)}" for i in range(10)]
    with tempfile.TemporaryDirectory() as tmpdir:
        pfile_list = [Path(tmpdir) / file for file in file_list]
        sfile_list = [str(file) for file in pfile_list]
        for file in pfile_list:
            file.touch()
        pattern = Path(tmpdir) / "fake_data_file_*"

        # init from str pattern
        ts = DatasetSeries(pattern)
        assert ts._pre_outputs == sfile_list

        # init from Path pattern
        ppattern = Path(pattern)
        ts = DatasetSeries(ppattern)
        assert ts._pre_outputs == sfile_list

        # init form str list
        ts = DatasetSeries(sfile_list)
        assert ts._pre_outputs == sfile_list

        # init form Path list
        ts = DatasetSeries(pfile_list)
        assert ts._pre_outputs == pfile_list

        # rejected input type (str repr of a list) "[file1, file2, ...]"
        assert_raises(FileNotFoundError, DatasetSeries, str(file_list))

        # finally, check that ts[0] fails to actually load
        assert_raises(YTUnidentifiedDataType, ts.__getitem__, 0)
def test_store():
    ds = yt.load(G30)
    store = ds.parameter_filename + ".yt"
    field = "density"
    if os.path.isfile(store):
        os.remove(store)

    proj1 = ds.proj(field, "z")
    sp = ds.sphere(ds.domain_center, (4, "kpc"))
    proj2 = ds.proj(field, "z", data_source=sp)

    proj1_c = ds.proj(field, "z")
    assert_equal(proj1[field], proj1_c[field])

    proj2_c = ds.proj(field, "z", data_source=sp)
    assert_equal(proj2[field], proj2_c[field])

    def fail_for_different_method():
        proj2_c = ds.proj(field, "z", data_source=sp, method="mip")
        assert_equal(proj2[field], proj2_c[field])

    # A note here: a unyt.exceptions.UnitOperationError is raised
    # and caught by numpy, which reraises a ValueError
    assert_raises(ValueError, fail_for_different_method)

    def fail_for_different_source():
        sp = ds.sphere(ds.domain_center, (2, "kpc"))
        proj2_c = ds.proj(field, "z", data_source=sp, method="integrate")
        assert_equal(proj2_c[field], proj2[field])

    assert_raises(AssertionError, fail_for_different_source)
def test_store():
    ds = yt.load(G30)
    store = ds.parameter_filename + '.yt'
    field = "density"
    if os.path.isfile(store):
        os.remove(store)

    proj1 = ds.proj(field, "z")
    sp = ds.sphere(ds.domain_center, (4, 'kpc'))
    proj2 = ds.proj(field, "z", data_source=sp)

    proj1_c = ds.proj(field, "z")
    assert_equal(proj1[field], proj1_c[field])

    proj2_c = ds.proj(field, "z", data_source=sp)
    assert_equal(proj2[field], proj2_c[field])

    def fail_for_different_method():
        proj2_c = ds.proj(field, "z", data_source=sp, method="mip")
        return np.equal(proj2[field], proj2_c[field]).all()
    assert_raises(YTUnitOperationError, fail_for_different_method)

    def fail_for_different_source():
        sp = ds.sphere(ds.domain_center, (2, 'kpc'))
        proj2_c = ds.proj(field, "z", data_source=sp, method="integrate")
        return assert_equal(proj2_c[field], proj2[field])
    assert_raises(AssertionError, fail_for_different_source)
Exemplo n.º 4
0
def test_validation():
    dims = np.array([4, 2, 4])
    grid_data = [
        dict(
            left_edge=[0.0, 0.0, 0.0],
            right_edge=[1.0, 1.0, 1.0],
            level=0,
            dimensions=dims,
        ),
        dict(
            left_edge=[0.25, 0.25, 0.25],
            right_edge=[0.75, 0.75, 0.75],
            level=1,
            dimensions=dims,
        ),
    ]
    bbox = np.array([[0, 1], [0, 1], [0, 1]])

    def load_grids():
        load_amr_grids(
            grid_data,
            dims,
            bbox=bbox,
            periodicity=(0, 0, 0),
            length_unit=1.0,
            refine_by=2,
        )

    assert_raises(YTIllDefinedAMR, load_grids)
Exemplo n.º 5
0
def test_center_error():
    ds = fake_random_ds(16, nprocs=16)

    with assert_raises(YTFieldNotFound):
        ds.sphere("min_non_existing_field_name", (0.25, "unitary"))

    with assert_raises(YTFieldNotFound):
        ds.sphere("max_non_existing_field_name", (0.25, "unitary"))
Exemplo n.º 6
0
def test_add_field_unit_semantics():
    ds = fake_random_ds(16)
    ad = ds.all_data()

    def density_alias(field, data):
        return data['density'].in_cgs()

    def unitless_data(field, data):
        return np.ones(data['density'].shape)

    ds.add_field(('gas','density_alias_no_units'), sampling_type='cell',
                 function=density_alias)
    ds.add_field(('gas','density_alias_auto'), sampling_type='cell',
                 function=density_alias, units='auto', dimensions='density')
    ds.add_field(('gas','density_alias_wrong_units'),
                 function=density_alias,
                 sampling_type='cell',
                 units='m/s')
    ds.add_field(('gas','density_alias_unparseable_units'),
                 sampling_type='cell',
                 function=density_alias,
                 units='dragons')
    ds.add_field(('gas','density_alias_auto_wrong_dims'),
                 function=density_alias,
                 sampling_type='cell',
                 units='auto',
                 dimensions="temperature")
    assert_raises(YTFieldUnitError, get_data, ds, 'density_alias_no_units')
    assert_raises(YTFieldUnitError, get_data, ds, 'density_alias_wrong_units')
    assert_raises(YTFieldUnitParseError, get_data, ds,
                  'density_alias_unparseable_units')
    assert_raises(YTDimensionalityError, get_data, ds, 'density_alias_auto_wrong_dims')

    dens = ad['density_alias_auto']
    assert_equal(str(dens.units), 'g/cm**3')

    ds.add_field(('gas','dimensionless'),
                 sampling_type='cell',
                 function=unitless_data)
    ds.add_field(('gas','dimensionless_auto'),
                 function=unitless_data,
                 sampling_type='cell',
                 units='auto',
                 dimensions='dimensionless')
    ds.add_field(('gas','dimensionless_explicit'),
                 function=unitless_data,
                 sampling_type='cell',
                 units='')
    ds.add_field(('gas','dimensionful'),
                 sampling_type='cell',
                 function=unitless_data,
                 units='g/cm**3')

    assert_equal(str(ad['dimensionless'].units), 'dimensionless')
    assert_equal(str(ad['dimensionless_auto'].units), 'dimensionless')
    assert_equal(str(ad['dimensionless_explicit'].units), 'dimensionless')
    assert_raises(YTFieldUnitError, get_data, ds, 'dimensionful')
Exemplo n.º 7
0
def test_typing_error_detection():
    invalid_schema = {"length_unit": "1m"}

    # this is the error that is raised by unyt on bad input
    assert_raises(RuntimeError, mock_quan, invalid_schema["length_unit"])

    # check that the sanitizer function is able to catch the
    # type issue before passing down to unyt
    assert_raises(TypeError, Dataset._sanitize_units_override, invalid_schema)
Exemplo n.º 8
0
def test_minimal_sphere_bad_inputs():
    ds = fake_random_ds(16, nprocs=8, particles=100)
    pos = ds.r[("all", "particle_position")]

    ## Check number of points >= 2
    # -> should fail
    assert_raises(YTException, ds.minimal_sphere, pos[:1, :])

    # -> should not fail
    ds.minimal_sphere(pos[:2, :])
Exemplo n.º 9
0
    def testCustomField(self):
        msg = f"INFO:yt:Loading plugins from {self.plugin_path}"
        with self.assertLogs("yt", level="INFO") as cm:
            yt.enable_plugins()
            self.assertEqual(cm.output, [msg])

        ds = fake_random_ds(16)
        dd = ds.all_data()
        self.assertEqual(str(dd[("gas", "random")].units), "dimensionless")
        self.assertEqual(dd[("gas", "random")].shape, dd[("gas", "density")].shape)
        assert yt.myfunc() == 12
        assert_raises(AttributeError, getattr, yt, "foobar")
Exemplo n.º 10
0
def test_find_points():
    """Main test suite for MatchPoints"""
    num_points = 100
    test_ds = setup_test_ds()
    randx = np.random.uniform(
        low=test_ds.domain_left_edge[0],
        high=test_ds.domain_right_edge[0],
        size=num_points,
    )
    randy = np.random.uniform(
        low=test_ds.domain_left_edge[1],
        high=test_ds.domain_right_edge[1],
        size=num_points,
    )
    randz = np.random.uniform(
        low=test_ds.domain_left_edge[2],
        high=test_ds.domain_right_edge[2],
        size=num_points,
    )

    point_grids, point_grid_inds = test_ds.index._find_points(
        randx, randy, randz)

    grid_inds = np.zeros((num_points), dtype="int64")

    for ind, ixx, iyy, izz in zip(range(num_points), randx, randy, randz):

        pos = np.array([ixx, iyy, izz])
        pt_level = -1

        for grid in test_ds.index.grids:

            if (np.all(pos >= grid.LeftEdge) and np.all(pos <= grid.RightEdge)
                    and grid.Level > pt_level):
                pt_level = grid.Level
                grid_inds[ind] = grid.id - grid._id_offset

    assert_equal(point_grid_inds, grid_inds)

    # Test whether find_points works for lists
    point_grids, point_grid_inds = test_ds.index._find_points(
        randx.tolist(), randy.tolist(), randz.tolist())
    assert_equal(point_grid_inds, grid_inds)

    # Test if find_points works for scalar
    ind = random.randint(0, num_points - 1)
    point_grids, point_grid_inds = test_ds.index._find_points(
        randx[ind], randy[ind], randz[ind])
    assert_equal(point_grid_inds, grid_inds[ind])

    # Test if find_points fails properly for non equal indices' array sizes
    assert_raises(AssertionError, test_ds.index._find_points, [0], 1.0, [2, 3])
Exemplo n.º 11
0
def test_get_morton_indices():
    from yt.utilities.lib.geometry_utils import get_morton_indices, get_morton_indices_unravel
    INDEX_MAX_64 = np.uint64(2097151)
    li = np.arange(6, dtype=np.uint64).reshape((2, 3))
    mi_ans = np.array([10, 229], dtype=np.uint64)
    mi_out = get_morton_indices(li)
    mi_out2 = get_morton_indices_unravel(li[:, 0], li[:, 1], li[:, 2])
    assert_array_equal(mi_out, mi_ans)
    assert_array_equal(mi_out2, mi_ans)
    li[0, :] = INDEX_MAX_64 * np.ones(3, dtype=np.uint64)
    assert_raises(ValueError, get_morton_indices, li)
    assert_raises(ValueError, get_morton_indices_unravel, li[:, 0], li[:, 1],
                  li[:, 2])
Exemplo n.º 12
0
    def testCustomField(self):
        plugin_file = os.path.join(CONFIG_DIR, ytcfg.get("yt", "plugin_filename"))
        msg = f"INFO:yt:Loading plugins from {plugin_file}"

        with self.assertLogs("yt", level="INFO") as cm:
            yt.enable_plugins()
            self.assertEqual(cm.output, [msg])

        ds = fake_random_ds(16)
        dd = ds.all_data()
        self.assertEqual(str(dd["random"].units), "dimensionless")
        self.assertEqual(dd["random"].shape, dd["density"].shape)
        assert yt.myfunc() == 12
        assert_raises(AttributeError, getattr, yt, "foobar")
Exemplo n.º 13
0
    def test_unequal_bin_field_profile(self):
        density = np.random.random(128)
        temperature = np.random.random(127)
        mass = np.random.random((128, 128))

        my_data = {
            ("gas", "density"): density,
            ("gas", "temperature"): temperature,
            ("gas", "mass"): mass,
        }
        fake_ds_med = {"current_time": yt.YTQuantity(10, "Myr")}
        field_types = {field: "gas" for field in my_data.keys()}
        yt.save_as_dataset(fake_ds_med,
                           "mydata.h5",
                           my_data,
                           field_types=field_types)

        ds = yt.load("mydata.h5")

        with assert_raises(YTProfileDataShape):
            yt.PhasePlot(
                ds.data,
                ("gas", "temperature"),
                ("gas", "density"),
                ("gas", "mass"),
            )
Exemplo n.º 14
0
def test_normalisations_vel_and_length():
    # test forbidden case: both velocity and temperature are specified as overrides
    overrides = dict(length_unit=length_unit,
                     velocity_unit=velocity_unit,
                     temperature_unit=temperature_unit)
    with assert_raises(ValueError):
        data_dir_load(khi_cartesian_2D, kwargs={'units_override': overrides})
Exemplo n.º 15
0
def test_normalisations_too_many_args():
    # test forbidden case: too many arguments (max 3 are allowed)
    overrides = dict(length_unit=length_unit,
                     numberdensity_unit=numberdensity_unit,
                     temperature_unit=temperature_unit,
                     time_unit=time_unit)
    with assert_raises(ValueError):
        data_dir_load(khi_cartesian_2D, kwargs={'units_override': overrides})
Exemplo n.º 16
0
    def test_unequal_bin_field_profile(self):
        density = np.random.random(128)
        temperature = np.random.random(127)
        cell_mass = np.random.random((128, 128))

        my_data = {
            "density": density,
            "temperature": temperature,
            "cell_mass": cell_mass}
        fake_ds_med = {"current_time": yt.YTQuantity(10, "Myr")}
        yt.save_as_dataset(fake_ds_med, "mydata.h5", my_data)

        ds = yt.load('mydata.h5')

        assert_raises(
            YTProfileDataShape,
            yt.PhasePlot, ds.data, 'temperature', 'density', 'cell_mass')
Exemplo n.º 17
0
    def testCustomField(self):
        plugin_file = os.path.join(CONFIG_DIR,
                                   ytcfg.get('yt', 'pluginfilename'))
        msg = 'INFO:yt:Loading plugins from %s' % plugin_file

        if sys.version_info >= (3, 4, 0):
            with self.assertLogs('yt', level='INFO') as cm:
                yt.enable_plugins()
                self.assertEqual(cm.output, [msg])
        else:
            yt.enable_plugins()

        ds = fake_random_ds(16)
        dd = ds.all_data()
        self.assertEqual(str(dd['random'].units), 'dimensionless')
        self.assertEqual(dd['random'].shape, dd['density'].shape)
        assert yt.myfunc() == 4
        assert_raises(AttributeError, getattr, yt, 'foobar')
Exemplo n.º 18
0
def test_plot_particle_field_error():
    ds = fake_random_ds(32, particles=100)

    field_names = [
        ("all", "particle_mass"),
        [("all", "particle_mass"), ("gas", "density")],
        [("gas", "density"), ("all", "particle_mass")],
    ]

    objects_normals = [
        (SlicePlot, 2),
        (SlicePlot, [1, 1, 1]),
        (ProjectionPlot, 2),
        (OffAxisProjectionPlot, [1, 1, 1]),
    ]

    for object, normal in objects_normals:
        for field_name_list in field_names:
            assert_raises(YTInvalidFieldType, object, ds, normal, field_name_list)
Exemplo n.º 19
0
def test_ellipsis_selection():
    ds = fake_amr_ds()
    reg = ds.r[:, :, :]
    ereg = ds.r[...]
    assert_array_equal(reg.fwidth, ereg.fwidth)

    reg = ds.r[(0.5, "cm"), :, :]
    ereg = ds.r[(0.5, "cm"), ...]
    assert_array_equal(reg.fwidth, ereg.fwidth)

    reg = ds.r[:, :, (0.5, "cm")]
    ereg = ds.r[..., (0.5, "cm")]
    assert_array_equal(reg.fwidth, ereg.fwidth)

    reg = ds.r[:, :, (0.5, "cm")]
    ereg = ds.r[..., (0.5, "cm")]
    assert_array_equal(reg.fwidth, ereg.fwidth)

    assert_raises(IndexError, ds.r.__getitem__, (..., (0.5, "cm"), ...))
Exemplo n.º 20
0
def test_invalid_max_level():
    invalid_value_args = (
        (1, None),
        (1, "foo"),
        (1, "bar"),
        (-1, "yt"),
    )
    for lvl, convention in invalid_value_args:
        with assert_raises(ValueError):
            yt.load(output_00080, max_level=lvl, max_level_convention=convention)

    invalid_type_args = (
        (1.0, "yt"),  # not an int
        ("invalid", "yt"),
    )
    # Should fail with value errors
    for lvl, convention in invalid_type_args:
        with assert_raises(TypeError):
            yt.load(output_00080, max_level=lvl, max_level_convention=convention)
Exemplo n.º 21
0
def test_inconsistent_field_shape():

    def load_field_field_mismatch():
        d = np.random.uniform(size=(32, 32, 32))
        t = np.random.uniform(size=(32, 64, 32))
        data = {"density": d, "temperature": t}
        load_uniform_grid(data, (32,32,32))

    assert_raises(YTInconsistentGridFieldShape,
                  load_field_field_mismatch)

    def load_field_grid_mismatch():
        d = np.random.uniform(size=(32, 32, 32))
        t = np.random.uniform(size=(32, 32, 32))
        data = {"density": d, "temperature": t}
        load_uniform_grid(data, (32,64,32))

    assert_raises(YTInconsistentGridFieldShapeGridDims,
                  load_field_grid_mismatch)

    def load_particle_fields_mismatch():
        x = np.random.uniform(size=100)
        y = np.random.uniform(size=100)
        z = np.random.uniform(size=200)
        data = {"particle_position_x": x,
                "particle_position_y": y,
                "particle_position_z": z}
        load_particles(data)

    assert_raises(YTInconsistentParticleFieldShape,
                  load_particle_fields_mismatch)
Exemplo n.º 22
0
def test_reject_invalid_normal_vector():
    ds = fake_amr_ds(geometry="cartesian")
    for ui in [0.0, 1.0, 2.0, 3.0]:
        # acceptable scalar numeric values are restricted to integers.
        # Floats might be a sign that something went wrong upstream
        # e.g., rounding errors, parsing error...
        assert_raises(TypeError, NormalPlot.sanitize_normal_vector, ds, ui)
    for ui in [
            "X",
            "xy",
            "not-an-axis",
        (0, 0, 0),
        [0, 0, 0],
            np.zeros(3),
        [1, 0, 0, 0],
        [1, 0],
        [1],
        [0],
            3,
            10,
    ]:
        assert_raises(ValueError, NormalPlot.sanitize_normal_vector, ds, ui)
Exemplo n.º 23
0
def test_load_ambiguous_data():
    # we deliberately setup a situation where two Dataset subclasses
    # that aren't parents are consisdered valid
    class FakeDataset(Dataset):
        @classmethod
        def _is_valid(cls, *args, **kwargs):
            return True

    class FakeDataset2(Dataset):
        @classmethod
        def _is_valid(cls, *args, **kwargs):
            return True

    try:
        with tempfile.TemporaryDirectory() as tmpdir:
            assert_raises(YTAmbiguousDataType, load, tmpdir)
    except Exception:
        raise
    finally:
        # tear down to avoid possible breakage in following tests
        output_type_registry.pop("FakeDataset")
        output_type_registry.pop("FakeDataset2")
Exemplo n.º 24
0
def test_qt_overflow():
    grid_data = []

    grid_dict = {}

    grid_dict['left_edge'] = [-1.0, -1.0, -1.0]
    grid_dict['right_edge'] = [1.0, 1.0, 1.0]
    grid_dict['dimensions'] = [8, 8, 8]
    grid_dict['level'] = 0

    grid_dict['density'] = np.ones((8,8,8))

    grid_data.append(grid_dict)

    domain_dimensions = np.array([8, 8, 8])

    spf = load_amr_grids(grid_data, domain_dimensions)

    def make_proj():
        p = ProjectionPlot(spf, 'x', ["density"], center='c', origin='native')
        return p
    assert_raises(YTIntDomainOverflow, make_proj)
Exemplo n.º 25
0
def test_qt_overflow():
    grid_data = []

    grid_dict = {}

    grid_dict["left_edge"] = [-1.0, -1.0, -1.0]
    grid_dict["right_edge"] = [1.0, 1.0, 1.0]
    grid_dict["dimensions"] = [8, 8, 8]
    grid_dict["level"] = 0

    grid_dict["density"] = np.ones((8, 8, 8))

    grid_data.append(grid_dict)

    domain_dimensions = np.array([8, 8, 8])

    spf = load_amr_grids(grid_data, domain_dimensions)

    def make_proj():
        p = ProjectionPlot(spf, "x", ["density"], center="c", origin="native")
        return p

    assert_raises(YTIntDomainOverflow, make_proj)
Exemplo n.º 26
0
def test_load_unidentified_data():
    with tempfile.TemporaryDirectory() as tmpdir:
        empty_file_path = Path(tmpdir) / "empty_file"
        empty_file_path.touch()
        assert_raises(YTOutputNotIdentified, load, tmpdir)
        assert_raises(YTOutputNotIdentified, load, empty_file_path)
        assert_raises(
            YTSimulationNotIdentified,
            simulation,
            tmpdir,
            "unregistered_simulation_type",
        )
        assert_raises(
            YTSimulationNotIdentified,
            simulation,
            empty_file_path,
            "unregistered_simulation_type",
        )
Exemplo n.º 27
0
def test_load_nonexistent_data():
    with tempfile.TemporaryDirectory() as tmpdir:
        assert_raises(FileNotFoundError, load,
                      os.path.join(tmpdir, "not_a_file"))
        assert_raises(FileNotFoundError, simulation,
                      os.path.join(tmpdir, "not_a_file"), "Enzo")

        # this one is a design choice: it is preferable to report the most important
        # problem in an error message (missing data is worse than a typo in
        # simulation_type), so we make sure the error raised is not YTSimulationNotIdentified
        assert_raises(
            FileNotFoundError,
            simulation,
            os.path.join(tmpdir, "not_a_file"),
            "unregistered_simulation_type",
        )
Exemplo n.º 28
0
def test_invalid_schema_detection():
    invalid_key_schemas = [
        {
            "len_unit": 1.0
        },  # plain invalid key
        {
            "lenght_unit": 1.0
        },  # typo
    ]
    for invalid_schema in invalid_key_schemas:
        assert_raises(ValueError, Dataset._sanitize_units_override,
                      invalid_schema)

    invalid_val_schemas = [
        {
            "length_unit": [1, 1, 1]
        },  # len(val) > 2
        {
            "length_unit": [1, 1, 1, 1, 1]
        },  # "data type not understood" in unyt
    ]

    for invalid_schema in invalid_val_schemas:
        assert_raises(TypeError, Dataset._sanitize_units_override,
                      invalid_schema)

    # 0 shouldn't make sense
    invalid_number_schemas = [
        {
            "length_unit": 0
        },
        {
            "length_unit": [0]
        },
        {
            "length_unit": (0, )
        },
        {
            "length_unit": (0, "cm")
        },
    ]
    for invalid_schema in invalid_number_schemas:
        assert_raises(ValueError, Dataset._sanitize_units_override,
                      invalid_schema)
Exemplo n.º 29
0
def test_invalid_level():
    # these are the exceptions raised by logging.Logger.setLog
    # since they are perfectly clear and readable, we check that nothing else
    # happens in the wrapper
    assert_raises(TypeError, set_log_level, 1.5)
    assert_raises(ValueError, set_log_level, "invalid_level")
 def test_load_empty_file(self):
     assert_raises(YTOutputNotIdentified, data_dir_load, "not_a_file")
     assert_raises(YTOutputNotIdentified, data_dir_load, "empty_file")
     assert_raises(YTOutputNotIdentified, data_dir_load, "empty_directory")
Exemplo n.º 31
0
def test_particle_profile_negative_field():
    # see Issue #1340
    n_particles = int(1e4)

    ppx, ppy, ppz = np.random.normal(size=[3, n_particles])
    pvx, pvy, pvz = -np.ones((3, n_particles))

    data = {
        'particle_position_x': ppx,
        'particle_position_y': ppy,
        'particle_position_z': ppz,
        'particle_velocity_x': pvx,
        'particle_velocity_y': pvy,
        'particle_velocity_z': pvz
    }

    bbox = 1.1 * np.array([[min(ppx), max(ppx)], [min(ppy), max(ppy)],
                           [min(ppz), max(ppz)]])
    ds = yt.load_particles(data, bbox=bbox)
    ad = ds.all_data()

    profile = yt.create_profile(ad,
                                ["particle_position_x", "particle_position_y"],
                                "particle_velocity_x",
                                logs={
                                    'particle_position_x': True,
                                    'particle_position_y': True,
                                    'particle_position_z': True
                                },
                                weight_field=None)
    assert profile['particle_velocity_x'].min() < 0
    assert profile.x_bins.min() > 0
    assert profile.y_bins.min() > 0

    profile = yt.create_profile(ad,
                                ["particle_position_x", "particle_position_y"],
                                "particle_velocity_x",
                                weight_field=None)
    assert profile['particle_velocity_x'].min() < 0
    assert profile.x_bins.min() < 0
    assert profile.y_bins.min() < 0

    # can't use CIC deposition with log-scaled bin fields
    with assert_raises(RuntimeError):
        yt.create_profile(ad, ["particle_position_x", "particle_position_y"],
                          "particle_velocity_x",
                          logs={
                              'particle_position_x': True,
                              'particle_position_y': False,
                              'particle_position_z': False
                          },
                          weight_field=None,
                          deposition='cic')

    # can't use CIC deposition with accumulation or fractional
    with assert_raises(RuntimeError):
        yt.create_profile(ad, ["particle_position_x", "particle_position_y"],
                          "particle_velocity_x",
                          logs={
                              'particle_position_x': False,
                              'particle_position_y': False,
                              'particle_position_z': False
                          },
                          weight_field=None,
                          deposition='cic',
                          accumulation=True,
                          fractional=True)