Exemplo n.º 1
0
def test_empty_like():
    z = empty(100, 10)
    z2 = empty_like(z)
    eq(z.shape, z2.shape)
    eq(z.chunks, z2.chunks)
    eq(z.dtype, z2.dtype)
    eq(z.cname, z2.cname)
    eq(z.clevel, z2.clevel)
    eq(z.shuffle, z2.shuffle)
    eq(z.fill_value, z2.fill_value)
Exemplo n.º 2
0
def test_empty_like():
    z = empty(100, 10)
    z2 = empty_like(z)
    eq(z.shape, z2.shape)
    eq(z.chunks, z2.chunks)
    eq(z.dtype, z2.dtype)
    eq(z.cname, z2.cname)
    eq(z.clevel, z2.clevel)
    eq(z.shuffle, z2.shuffle)
    eq(z.fill_value, z2.fill_value)
Exemplo n.º 3
0
def test_set_selections_with_fields():

    v = [('aaa', 1, 4.2),
         ('bbb', 2, 8.4),
         ('ccc', 3, 12.6)]
    v = np.array(v, dtype=[('foo', 'S3'), ('bar', 'i4'), ('baz', 'f8')])
    a = np.empty_like(v)
    z = zarr.empty_like(v, chunks=2)

    fields_fixture = [
        'foo',
        [],
        ['foo'],
        ['foo', 'bar'],
        ['foo', 'baz'],
        ['bar', 'baz'],
        ['foo', 'bar', 'baz'],
        ['bar', 'foo'],
        ['baz', 'bar', 'foo'],
    ]

    for fields in fields_fixture:

        # currently multi-field assignment is not supported in numpy, so we won't support
        # it either
        if isinstance(fields, list) and len(fields) > 1:
            with pytest.raises(IndexError):
                z.set_basic_selection(Ellipsis, v, fields=fields)
            with pytest.raises(IndexError):
                z.set_orthogonal_selection([0, 2], v, fields=fields)
            with pytest.raises(IndexError):
                z.set_coordinate_selection([0, 2], v, fields=fields)
            with pytest.raises(IndexError):
                z.set_mask_selection([True, False, True], v, fields=fields)

        else:

            if isinstance(fields, list) and len(fields) == 1:
                # work around numpy does not support multi-field assignment even if there
                # is only one field
                key = fields[0]
            elif isinstance(fields, list) and len(fields) == 0:
                # work around numpy ambiguity about what is a field selection
                key = Ellipsis
            else:
                key = fields

            # setup expectation
            a[:] = ('', 0, 0)
            z[:] = ('', 0, 0)
            assert_array_equal(a, z[:])
            a[key] = v[key]
            # total selection
            z.set_basic_selection(Ellipsis, v[key], fields=fields)
            assert_array_equal(a, z[:])

            # basic selection with slice
            a[:] = ('', 0, 0)
            z[:] = ('', 0, 0)
            a[key][0:2] = v[key][0:2]
            z.set_basic_selection(slice(0, 2), v[key][0:2], fields=fields)
            assert_array_equal(a, z[:])

            # orthogonal selection
            a[:] = ('', 0, 0)
            z[:] = ('', 0, 0)
            ix = [0, 2]
            a[key][ix] = v[key][ix]
            z.set_orthogonal_selection(ix, v[key][ix], fields=fields)
            assert_array_equal(a, z[:])

            # coordinate selection
            a[:] = ('', 0, 0)
            z[:] = ('', 0, 0)
            ix = [0, 2]
            a[key][ix] = v[key][ix]
            z.set_coordinate_selection(ix, v[key][ix], fields=fields)
            assert_array_equal(a, z[:])

            # mask selection
            a[:] = ('', 0, 0)
            z[:] = ('', 0, 0)
            ix = [True, False, True]
            a[key][ix] = v[key][ix]
            z.set_mask_selection(ix, v[key][ix], fields=fields)
            assert_array_equal(a, z[:])
Exemplo n.º 4
0
import sys
import timeit

import numpy as np

import line_profiler
import zarr
from zarr import blosc

sys.path.insert(0, '..')

# setup
a = np.random.normal(2000, 1000, size=200000000).astype('u2')
z = zarr.empty_like(a,
                    chunks=1000000,
                    compression='blosc',
                    compression_opts=dict(cname='lz4', clevel=5, shuffle=2))
print(z)

print('*' * 79)

# time
t = timeit.repeat('z[:] = a', repeat=10, number=1, globals=globals())
print(t)
print(min(t))
print(z)

# profile
profile = line_profiler.LineProfiler(blosc.compress)
profile.run('z[:] = a')
profile.print_stats()