Exemplo n.º 1
0
    def test_blotter_processes_splits(self):
        blotter = SimulationBlotter(equity_slippage=FixedSlippage())

        # set up two open limit orders with very low limit prices,
        # one for sid 1 and one for sid 2
        asset1 = self.asset_finder.retrieve_asset(1)
        asset2 = self.asset_finder.retrieve_asset(2)
        asset133 = self.asset_finder.retrieve_asset(133)

        blotter.order(asset1, 100, LimitOrder(10, asset=asset1))
        blotter.order(asset2, 100, LimitOrder(10, asset=asset2))

        # send in splits for assets 133 and 2.  We have no open orders for
        # asset 133 so it should be ignored.
        blotter.process_splits([(asset133, 0.5), (asset2, 0.3333)])

        for asset in [asset1, asset2]:
            order_lists = blotter.open_orders[asset]
            self.assertIsNotNone(order_lists)
            self.assertEqual(1, len(order_lists))

        asset1_order = blotter.open_orders[1][0]
        asset2_order = blotter.open_orders[2][0]

        # make sure the asset1 order didn't change
        self.assertEqual(100, asset1_order.amount)
        self.assertEqual(10, asset1_order.limit)
        self.assertEqual(1, asset1_order.asset)

        # make sure the asset2 order did change
        # to 300 shares at 3.33
        self.assertEqual(300, asset2_order.amount)
        self.assertEqual(3.33, asset2_order.limit)
        self.assertEqual(2, asset2_order.asset)
Exemplo n.º 2
0
    def test_blotter_processes_splits(self):
        blotter = SimulationBlotter(equity_slippage=FixedSlippage())

        # set up two open limit orders with very low limit prices,
        # one for sid 1 and one for sid 2
        asset1 = self.asset_finder.retrieve_asset(1)
        asset2 = self.asset_finder.retrieve_asset(2)
        asset133 = self.asset_finder.retrieve_asset(133)

        blotter.order(asset1, 100, LimitOrder(10, asset=asset1))
        blotter.order(asset2, 100, LimitOrder(10, asset=asset2))

        # send in splits for assets 133 and 2.  We have no open orders for
        # asset 133 so it should be ignored.
        blotter.process_splits([(asset133, 0.5), (asset2, 0.3333)])

        for asset in [asset1, asset2]:
            order_lists = blotter.open_orders[asset]
            assert order_lists is not None
            assert 1 == len(order_lists)

        asset1_order = blotter.open_orders[1][0]
        asset2_order = blotter.open_orders[2][0]

        # make sure the asset1 order didn't change
        assert 100 == asset1_order.amount
        assert 10 == asset1_order.limit
        assert 1 == asset1_order.asset

        # make sure the asset2 order did change
        # to 300 shares at 3.33
        assert 300 == asset2_order.amount
        assert 3.33 == asset2_order.limit
        assert 2 == asset2_order.asset
Exemplo n.º 3
0
    def test_blotter_processes_splits(self):

        sim_params = factory.create_simulation_parameters(
                start=self.start,
                end=self.end)

        blotter = SimulationBlotter(sim_params, equity_slippage=FixedSlippage())

        # set up two open limit orders with very low limit prices,
        # one for sid 1 and one for sid 2
        asset1 = self.asset_finder.retrieve_asset(1)
        asset2 = self.asset_finder.retrieve_asset(2)
        asset133 = self.asset_finder.retrieve_asset(133)

        blotter.order(asset1, 100, LimitOrder(10, asset=asset1))
        blotter.order(asset2, 100, LimitOrder(10, asset=asset2))

        # send in splits for assets 133 and 2.  We have no open orders for
        # asset 133 so it should be ignored.
        blotter.process_splits([(asset133, 0.5), (asset2, 0.3333)])

        for asset in [asset1, asset2]:
            order_lists = blotter.open_orders[asset]
            self.assertIsNotNone(order_lists)
            self.assertEqual(1, len(order_lists))

        asset1_order = blotter.open_orders[1][0]
        asset2_order = blotter.open_orders[2][0]

        # make sure the asset1 order didn't change
        self.assertEqual(100, asset1_order.amount)
        self.assertEqual(10, asset1_order.limit)
        self.assertEqual(1, asset1_order.asset)

        # make sure the asset2 order did change
        # to 300 shares at 3.33
        self.assertEqual(300, asset2_order.amount)
        self.assertEqual(3.33, asset2_order.limit)
        self.assertEqual(2, asset2_order.asset)
Exemplo n.º 4
0
    def transaction_sim(self, **params):
        """This is a utility method that asserts expected
        results for conversion of orders to transactions given a
        trade history
        """
        trade_count = params["trade_count"]
        trade_interval = params["trade_interval"]
        order_count = params["order_count"]
        order_amount = params["order_amount"]
        order_interval = params["order_interval"]
        expected_txn_count = params["expected_txn_count"]
        expected_txn_volume = params["expected_txn_volume"]

        # optional parameters
        # ---------------------
        # if present, alternate between long and short sales
        alternate = params.get("alternate")

        # if present, expect transaction amounts to match orders exactly.
        complete_fill = params.get("complete_fill")

        asset1 = self.asset_finder.retrieve_asset(1)
        with TempDirectory() as tempdir:

            if trade_interval < timedelta(days=1):
                sim_params = factory.create_simulation_parameters(
                    start=self.start, end=self.end, data_frequency="minute")

                minutes = self.trading_calendar.minutes_window(
                    sim_params.first_open,
                    int((trade_interval.total_seconds() / 60) * trade_count) +
                    100,
                )

                price_data = np.array([10.1] * len(minutes))
                assets = {
                    asset1.sid:
                    pd.DataFrame({
                        "open": price_data,
                        "high": price_data,
                        "low": price_data,
                        "close": price_data,
                        "volume": np.array([100] * len(minutes)),
                        "dt": minutes,
                    }).set_index("dt")
                }

                write_bcolz_minute_data(
                    self.trading_calendar,
                    self.trading_calendar.sessions_in_range(
                        self.trading_calendar.minute_to_session_label(
                            minutes[0]),
                        self.trading_calendar.minute_to_session_label(
                            minutes[-1]),
                    ),
                    tempdir.path,
                    assets.items(),
                )

                equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

                data_portal = DataPortal(
                    self.asset_finder,
                    self.trading_calendar,
                    first_trading_day=equity_minute_reader.first_trading_day,
                    equity_minute_reader=equity_minute_reader,
                )
            else:
                sim_params = factory.create_simulation_parameters(
                    data_frequency="daily")

                days = sim_params.sessions

                assets = {
                    1:
                    pd.DataFrame(
                        {
                            "open": [10.1] * len(days),
                            "high": [10.1] * len(days),
                            "low": [10.1] * len(days),
                            "close": [10.1] * len(days),
                            "volume": [100] * len(days),
                            "day": [day.value for day in days],
                        },
                        index=days,
                    )
                }

                path = os.path.join(tempdir.path, "testdata.bcolz")
                BcolzDailyBarWriter(path, self.trading_calendar, days[0],
                                    days[-1]).write(assets.items())

                equity_daily_reader = BcolzDailyBarReader(path)

                data_portal = DataPortal(
                    self.asset_finder,
                    self.trading_calendar,
                    first_trading_day=equity_daily_reader.first_trading_day,
                    equity_daily_reader=equity_daily_reader,
                )

            if "default_slippage" not in params or not params[
                    "default_slippage"]:
                slippage_func = FixedBasisPointsSlippage()
            else:
                slippage_func = None

            blotter = SimulationBlotter(slippage_func)

            start_date = sim_params.first_open

            if alternate:
                alternator = -1
            else:
                alternator = 1

            tracker = MetricsTracker(
                trading_calendar=self.trading_calendar,
                first_session=sim_params.start_session,
                last_session=sim_params.end_session,
                capital_base=sim_params.capital_base,
                emission_rate=sim_params.emission_rate,
                data_frequency=sim_params.data_frequency,
                asset_finder=self.asset_finder,
                metrics=load_metrics_set("none"),
            )

            # replicate what tradesim does by going through every minute or day
            # of the simulation and processing open orders each time
            if sim_params.data_frequency == "minute":
                ticks = minutes
            else:
                ticks = days

            transactions = []

            order_list = []
            order_date = start_date
            for tick in ticks:
                blotter.current_dt = tick
                if tick >= order_date and len(order_list) < order_count:
                    # place an order
                    direction = alternator**len(order_list)
                    order_id = blotter.order(
                        asset1,
                        order_amount * direction,
                        MarketOrder(),
                    )
                    order_list.append(blotter.orders[order_id])
                    order_date = order_date + order_interval
                    # move after market orders to just after market next
                    # market open.
                    if order_date.hour >= 21:
                        if order_date.minute >= 00:
                            order_date = order_date + timedelta(days=1)
                            order_date = order_date.replace(hour=14, minute=30)
                else:
                    bar_data = BarData(
                        data_portal=data_portal,
                        simulation_dt_func=lambda: tick,
                        data_frequency=sim_params.data_frequency,
                        trading_calendar=self.trading_calendar,
                        restrictions=NoRestrictions(),
                    )
                    txns, _, closed_orders = blotter.get_transactions(bar_data)
                    for txn in txns:
                        tracker.process_transaction(txn)
                        transactions.append(txn)

                    blotter.prune_orders(closed_orders)

            for i in range(order_count):
                order = order_list[i]
                assert order.asset == asset1
                assert order.amount == order_amount * alternator**i

            if complete_fill:
                assert len(transactions) == len(order_list)

            total_volume = 0
            for i in range(len(transactions)):
                txn = transactions[i]
                total_volume += txn.amount
                if complete_fill:
                    order = order_list[i]
                    assert order.amount == txn.amount

            assert total_volume == expected_txn_volume

            assert len(transactions) == expected_txn_count

            if total_volume == 0:
                with pytest.raises(KeyError):
                    tracker.positions[asset1]
            else:
                cumulative_pos = tracker.positions[asset1]
                assert total_volume == cumulative_pos.amount

            # the open orders should not contain the asset.
            oo = blotter.open_orders
            assert asset1 not in oo, "Entry is removed when no open orders"
Exemplo n.º 5
0
    def transaction_sim(self, **params):
        """This is a utility method that asserts expected
        results for conversion of orders to transactions given a
        trade history
        """
        trade_count = params['trade_count']
        trade_interval = params['trade_interval']
        order_count = params['order_count']
        order_amount = params['order_amount']
        order_interval = params['order_interval']
        expected_txn_count = params['expected_txn_count']
        expected_txn_volume = params['expected_txn_volume']

        # optional parameters
        # ---------------------
        # if present, alternate between long and short sales
        alternate = params.get('alternate')

        # if present, expect transaction amounts to match orders exactly.
        complete_fill = params.get('complete_fill')

        asset1 = self.asset_finder.retrieve_asset(1)
        with TempDirectory() as tempdir:

            if trade_interval < timedelta(days=1):
                sim_params = factory.create_simulation_parameters(
                    start=self.start,
                    end=self.end,
                    data_frequency="minute"
                )

                minutes = self.trading_calendar.minutes_window(
                    sim_params.first_open,
                    int((trade_interval.total_seconds() / 60) * trade_count)
                    + 100)

                price_data = np.array([10.1] * len(minutes))
                assets = {
                    asset1.sid: pd.DataFrame({
                        "open": price_data,
                        "high": price_data,
                        "low": price_data,
                        "close": price_data,
                        "volume": np.array([100] * len(minutes)),
                        "dt": minutes
                    }).set_index("dt")
                }

                write_bcolz_minute_data(
                    self.trading_calendar,
                    self.trading_calendar.sessions_in_range(
                        self.trading_calendar.minute_to_session_label(
                            minutes[0]
                        ),
                        self.trading_calendar.minute_to_session_label(
                            minutes[-1]
                        )
                    ),
                    tempdir.path,
                    iteritems(assets),
                )

                equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

                data_portal = DataPortal(
                    self.asset_finder, self.trading_calendar,
                    first_trading_day=equity_minute_reader.first_trading_day,
                    equity_minute_reader=equity_minute_reader,
                )
            else:
                sim_params = factory.create_simulation_parameters(
                    data_frequency="daily"
                )

                days = sim_params.sessions

                assets = {
                    1: pd.DataFrame({
                        "open": [10.1] * len(days),
                        "high": [10.1] * len(days),
                        "low": [10.1] * len(days),
                        "close": [10.1] * len(days),
                        "volume": [100] * len(days),
                        "day": [day.value for day in days]
                    }, index=days)
                }

                path = os.path.join(tempdir.path, "testdata.bcolz")
                BcolzDailyBarWriter(path, self.trading_calendar, days[0],
                                    days[-1]).write(
                    assets.items()
                )

                equity_daily_reader = BcolzDailyBarReader(path)

                data_portal = DataPortal(
                    self.asset_finder, self.trading_calendar,
                    first_trading_day=equity_daily_reader.first_trading_day,
                    equity_daily_reader=equity_daily_reader,
                )

            if "default_slippage" not in params or \
               not params["default_slippage"]:
                slippage_func = FixedBasisPointsSlippage()
            else:
                slippage_func = None

            blotter = SimulationBlotter(slippage_func)

            start_date = sim_params.first_open

            if alternate:
                alternator = -1
            else:
                alternator = 1

            tracker = MetricsTracker(
                trading_calendar=self.trading_calendar,
                first_session=sim_params.start_session,
                last_session=sim_params.end_session,
                capital_base=sim_params.capital_base,
                emission_rate=sim_params.emission_rate,
                data_frequency=sim_params.data_frequency,
                asset_finder=self.asset_finder,
                metrics=load_metrics_set('none'),
            )

            # replicate what tradesim does by going through every minute or day
            # of the simulation and processing open orders each time
            if sim_params.data_frequency == "minute":
                ticks = minutes
            else:
                ticks = days

            transactions = []

            order_list = []
            order_date = start_date
            for tick in ticks:
                blotter.current_dt = tick
                if tick >= order_date and len(order_list) < order_count:
                    # place an order
                    direction = alternator ** len(order_list)
                    order_id = blotter.order(
                        asset1,
                        order_amount * direction,
                        MarketOrder(),
                    )
                    order_list.append(blotter.orders[order_id])
                    order_date = order_date + order_interval
                    # move after market orders to just after market next
                    # market open.
                    if order_date.hour >= 21:
                        if order_date.minute >= 00:
                            order_date = order_date + timedelta(days=1)
                            order_date = order_date.replace(hour=14, minute=30)
                else:
                    bar_data = BarData(
                        data_portal=data_portal,
                        simulation_dt_func=lambda: tick,
                        data_frequency=sim_params.data_frequency,
                        trading_calendar=self.trading_calendar,
                        restrictions=NoRestrictions(),
                    )
                    txns, _, closed_orders = blotter.get_transactions(bar_data)
                    for txn in txns:
                        tracker.process_transaction(txn)
                        transactions.append(txn)

                    blotter.prune_orders(closed_orders)

            for i in range(order_count):
                order = order_list[i]
                self.assertEqual(order.asset, asset1)
                self.assertEqual(order.amount, order_amount * alternator ** i)

            if complete_fill:
                self.assertEqual(len(transactions), len(order_list))

            total_volume = 0
            for i in range(len(transactions)):
                txn = transactions[i]
                total_volume += txn.amount
                if complete_fill:
                    order = order_list[i]
                    self.assertEqual(order.amount, txn.amount)

            self.assertEqual(total_volume, expected_txn_volume)

            self.assertEqual(len(transactions), expected_txn_count)

            if total_volume == 0:
                self.assertRaises(KeyError, lambda: tracker.positions[asset1])
            else:
                cumulative_pos = tracker.positions[asset1]
                self.assertEqual(total_volume, cumulative_pos.amount)

            # the open orders should not contain the asset.
            oo = blotter.open_orders
            self.assertNotIn(
                asset1,
                oo,
                "Entry is removed when no open orders"
            )