Exemplo n.º 1
0
    def __init__(self, calendar_name='NYSE'):
        self._calendar = zl.get_calendar(name=calendar_name)
        self._cols = [
            'open', 'high', 'low', 'close', 'volume', 'dividend', 'split'
        ]

        # The number of days the price manager will keep trying to pull data for a symbol that is not returning data.
        self.MISSING_DATE_THRESHOLD = 5
Exemplo n.º 2
0
class ZacksBundleTestCase(ZiplineTestCase):
    """
    Class for testing the Zacks daily data bundle.
    An test file is stored in tests/resources/zacks_samples/fictious.csv

    """
    symbols = 'MFF', 'JMH', 'PBH'
    asset_start = pd.Timestamp('2016-04-18', tz='utc')
    asset_end = pd.Timestamp('2016-07-06', tz='utc')
    bundle = bundles['quandl']
    calendar = get_calendar(bundle.calendar_name)
    start_date = calendar.first_session
    end_date = calendar.last_session
    api_key = 'ayylmao'
    columns = 'open', 'high', 'low', 'close', 'volume'

    def _expected_data(self, asset_finder):
        sids = {
            symbol: asset_finder.lookup_symbol(
                symbol,
                self.asset_start,
            ).sid
            for symbol in self.symbols
        }

        # load data from CSV
        df = pd.read_csv(test_resource_path('zacks_samples', 'fictitious.csv'),
                         index_col='date',
                         parse_dates=['date'],
                         usecols=[
                             'date', 'open', 'high', 'low', 'close', 'volume',
                             'ticker'
                         ],
                         na_values=['NA'])
        # drop NA rows (non trading days) or loader will wipe out entire column
        df = df.dropna()

        df = df.replace({"ticker": sids})  # convert ticker to sids
        df = df.rename(columns={"ticker": "sid"})

        # zacks data contains fractional shares, these get dropped
        df["volume"] = np.floor(df["volume"])

        # split one large DataFrame into one per sid
        # (also drops unwanted tickers)
        subs = [df[df['sid'] == sid] for sid in sorted(sids.values())]

        # package up data from CSV so that it is in the same format as data
        # coming out of the bundle the format is a list of 5 2D arrays one
        # for each OHLCV
        pricing = []
        for column in self.columns:
            vs = np.zeros((subs[0].shape[0], len(subs)))
            for i, sub in enumerate(subs):
                vs[:, i] = sub[column].values
            if column == 'volume':
                vs = np.nan_to_num(vs)
            pricing.append(vs)

        return pricing, []

    def test_bundle(self):
        zipline_root = self.enter_instance_context(tmp_dir()).path
        environ = {
            'ZIPLINE_ROOT': zipline_root,
            'QUANDL_API_KEY': self.api_key,
        }

        # custom bundles need to be registered before use or they will not
        # be recognized
        register(
            'ZacksQuandl',
            from_zacks_dump(
                test_resource_path('zacks_samples', 'fictitious.csv')))
        ingest('ZacksQuandl', environ=environ)

        # load bundle now that it has been ingested
        bundle = load('ZacksQuandl', environ=environ)
        sids = 0, 1, 2

        # check sids match
        assert_equal(set(bundle.asset_finder.sids), set(sids))

        # check asset_{start, end} is the same as {start, end}_date
        for equity in bundle.asset_finder.retrieve_all(sids):
            assert_equal(equity.start_date, self.asset_start, msg=equity)
            assert_equal(equity.end_date, self.asset_end, msg=equity)

        # get daily OHLCV data from bundle
        sessions = self.calendar.all_sessions
        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            self.columns,
            sessions[sessions.get_loc(self.asset_start, 'bfill')],
            sessions[sessions.get_loc(self.asset_end, 'ffill')],
            sids,
        )

        # get expected data from csv
        expected_pricing, expected_adjustments = self._expected_data(
            bundle.asset_finder, )

        # check OHLCV data matches
        assert_equal(actual, expected_pricing, array_decimal=2)

        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            self.columns,
            sessions,
            pd.Index(sids),
        )

        for column, adjustments, expected in zip(self.columns,
                                                 adjustments_for_cols,
                                                 expected_adjustments):
            assert_equal(
                adjustments,
                expected,
                msg=column,
            )
Exemplo n.º 3
0
class QuandlBundleTestCase(WithResponses, ZiplineTestCase):
    symbols = "AAPL", "BRK_A", "MSFT", "ZEN"
    start_date = pd.Timestamp("2014-01", tz="utc")
    end_date = pd.Timestamp("2015-01", tz="utc")
    bundle = bundles["quandl"]
    calendar = get_calendar(bundle.calendar_name)
    api_key = "IamNotaQuandlAPIkey"
    columns = "open", "high", "low", "close", "volume"

    def _expected_data(self, asset_finder):
        sids = {
            symbol: asset_finder.lookup_symbol(
                symbol,
                None,
            ).sid
            for symbol in self.symbols
        }

        # Load raw data from quandl test resources.
        data = load_data_table(
            file=test_resource_path("quandl_samples", "QUANDL_ARCHIVE.zip"),
            index_col="date",
        )
        data["sid"] = pd.factorize(data.symbol)[0]

        all_ = data.set_index(
            "sid",
            append=True,
        ).unstack()

        # fancy list comprehension with statements
        @list
        @apply
        def pricing():
            for column in self.columns:
                vs = all_[column].values
                if column == "volume":
                    vs = np.nan_to_num(vs)
                yield vs

        # the first index our written data will appear in the files on disk
        start_idx = self.calendar.all_sessions.get_loc(self.start_date,
                                                       "ffill") + 1

        # convert an index into the raw dataframe into an index into the
        # final data
        i = op.add(start_idx)

        def expected_dividend_adjustment(idx, symbol):
            sid = sids[symbol]
            return (1 - all_.iloc[idx]["ex_dividend", sid] /
                    all_.iloc[idx - 1]["close", sid])

        adjustments = [
            # ohlc
            {
                # dividends
                i(24): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(24),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=expected_dividend_adjustment(24, "AAPL"),
                    )
                ],
                i(87): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(87),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=expected_dividend_adjustment(87, "AAPL"),
                    )
                ],
                i(150): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(150),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=expected_dividend_adjustment(150, "AAPL"),
                    )
                ],
                i(214): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(214),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=expected_dividend_adjustment(214, "AAPL"),
                    )
                ],
                i(31): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(31),
                        first_col=sids["MSFT"],
                        last_col=sids["MSFT"],
                        value=expected_dividend_adjustment(31, "MSFT"),
                    )
                ],
                i(90): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(90),
                        first_col=sids["MSFT"],
                        last_col=sids["MSFT"],
                        value=expected_dividend_adjustment(90, "MSFT"),
                    )
                ],
                i(158): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(158),
                        first_col=sids["MSFT"],
                        last_col=sids["MSFT"],
                        value=expected_dividend_adjustment(158, "MSFT"),
                    )
                ],
                i(222): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(222),
                        first_col=sids["MSFT"],
                        last_col=sids["MSFT"],
                        value=expected_dividend_adjustment(222, "MSFT"),
                    )
                ],
                # splits
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=1.0 / 7.0,
                    )
                ],
            },
        ] * (len(self.columns) - 1) + [
            # volume
            {
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids["AAPL"],
                        last_col=sids["AAPL"],
                        value=7.0,
                    )
                ],
            }
        ]
        return pricing, adjustments

    def test_bundle(self):
        with open(test_resource_path("quandl_samples", "QUANDL_ARCHIVE.zip"),
                  "rb") as quandl_response:

            self.responses.add(
                self.responses.GET,
                "https://file_url.mock.quandl",
                body=quandl_response.read(),
                content_type="application/zip",
                status=200,
            )

        url_map = {
            format_metadata_url(self.api_key):
            test_resource_path(
                "quandl_samples",
                "metadata.csv.gz",
            )
        }

        zipline_root = self.enter_instance_context(tmp_dir()).path
        environ = {
            "ZIPLINE_ROOT": zipline_root,
            "QUANDL_API_KEY": self.api_key,
        }

        with patch_read_csv(url_map):
            ingest("quandl", environ=environ)

        bundle = load("quandl", environ=environ)
        sids = 0, 1, 2, 3
        assert_equal(set(bundle.asset_finder.sids), set(sids))

        sessions = self.calendar.all_sessions
        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            self.columns,
            sessions[sessions.get_loc(self.start_date, "bfill")],
            sessions[sessions.get_loc(self.end_date, "ffill")],
            sids,
        )
        expected_pricing, expected_adjustments = self._expected_data(
            bundle.asset_finder, )
        assert_equal(actual, expected_pricing, array_decimal=2)

        adjs_for_cols = bundle.adjustment_reader.load_pricing_adjustments(
            self.columns,
            sessions,
            pd.Index(sids),
        )

        for column, adjustments, expected in zip(self.columns, adjs_for_cols,
                                                 expected_adjustments):
            assert_equal(
                adjustments,
                expected,
                msg=column,
            )
Exemplo n.º 4
0
class QuandlBundleTestCase(WithResponses, ZiplineTestCase):
    symbols = 'AAPL', 'BRK_A', 'MSFT', 'ZEN'
    start_date = pd.Timestamp('2014-01', tz='utc')
    end_date = pd.Timestamp('2015-01', tz='utc')
    bundle = bundles['quandl']
    calendar = get_calendar(bundle.calendar_name)
    api_key = 'IamNotaQuandlAPIkey'
    columns = 'open', 'high', 'low', 'close', 'volume'

    def _expected_data(self, asset_finder):
        sids = {
            symbol: asset_finder.lookup_symbol(
                symbol,
                None,
            ).sid
            for symbol in self.symbols
        }

        # Load raw data from quandl test resources.
        data = load_data_table(file=test_resource_path('quandl_samples',
                                                       'QUANDL_ARCHIVE.zip'),
                               index_col='date')
        data['sid'] = pd.factorize(data.symbol)[0]

        all_ = data.set_index(
            'sid',
            append=True,
        ).unstack()

        # fancy list comprehension with statements
        @list
        @apply
        def pricing():
            for column in self.columns:
                vs = all_[column].values
                if column == 'volume':
                    vs = np.nan_to_num(vs)
                yield vs

        # the first index our written data will appear in the files on disk
        start_idx = (
            self.calendar.all_sessions.get_loc(self.start_date, 'ffill') + 1)

        # convert an index into the raw dataframe into an index into the
        # final data
        i = op.add(start_idx)

        def expected_dividend_adjustment(idx, symbol):
            sid = sids[symbol]

            return (1 - all_.iloc[idx]['ex_dividend'].loc[sid] /
                    all_.iloc[idx - 1]['close'].loc[sid])

        adjustments = [
            # ohlc
            {
                # dividends
                i(24): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(24),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(24, 'AAPL'),
                    )
                ],
                i(87): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(87),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(87, 'AAPL'),
                    )
                ],
                i(150): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(150),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(150, 'AAPL'),
                    )
                ],
                i(214): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(214),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(214, 'AAPL'),
                    )
                ],
                i(31): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(31),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(31, 'MSFT'),
                    )
                ],
                i(90): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(90),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(90, 'MSFT'),
                    )
                ],
                i(158): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(158),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(158, 'MSFT'),
                    )
                ],
                i(222): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(222),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(222, 'MSFT'),
                    )
                ],

                # splits
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=1.0 / 7.0,
                    )
                ],
            },
        ] * (len(self.columns) - 1) + [
            # volume
            {
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=7.0,
                    )
                ],
            }
        ]
        return pricing, adjustments

    def test_bundle(self):
        with open(test_resource_path('quandl_samples', 'QUANDL_ARCHIVE.zip'),
                  'rb') as quandl_response:

            self.responses.add(
                self.responses.GET,
                'https://file_url.mock.quandl',
                body=quandl_response.read(),
                content_type='application/zip',
                status=200,
            )

        url_map = {
            format_metadata_url(self.api_key):
            test_resource_path(
                'quandl_samples',
                'metadata.csv.gz',
            )
        }

        zipline_root = self.enter_instance_context(tmp_dir()).path
        environ = {
            'ZIPLINE_ROOT': zipline_root,
            'QUANDL_API_KEY': self.api_key,
        }

        with patch_read_csv(url_map):
            ingest('quandl', environ=environ)

        bundle = load('quandl', environ=environ)
        sids = 0, 1, 2, 3
        assert_equal(set(bundle.asset_finder.sids), set(sids))

        sessions = self.calendar.all_sessions
        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            self.columns,
            sessions[sessions.get_loc(self.start_date, 'bfill')],
            sessions[sessions.get_loc(self.end_date, 'ffill')],
            sids,
        )
        expected_pricing, expected_adjustments = self._expected_data(
            bundle.asset_finder, )
        assert_equal(actual, expected_pricing, array_decimal=2)

        adjs_for_cols = bundle.adjustment_reader.load_pricing_adjustments(
            self.columns,
            sessions,
            pd.Index(sids),
        )

        for column, adjustments, expected in zip(self.columns, adjs_for_cols,
                                                 expected_adjustments):
            assert_equal(
                adjustments,
                expected,
                msg=column,
            )
Exemplo n.º 5
0
from zipline import get_calendar
from zipline.data.benchmarks_cn import get_cn_benchmark_returns
from zipline.data.treasuries_cn import get_treasury_data
from zipline.pipeline import CustomFactor, Pipeline
from zipline.pipeline.data import USEquityPricing
from zipline.pipeline.fundamentals.reader import Fundamentals
from zipline.research import run_pipeline

from cswd.common.utils import data_root

# 设置显示日志
logbook.set_datetime_format('local')
logbook.StreamHandler(sys.stdout).push_application()
logger = logbook.Logger('构建ff因子')

calendar = get_calendar('SZSH')

all_trading_days = calendar.schedule.index
all_trading_days = all_trading_days[
    all_trading_days <= calendar.actual_last_session]

# 每月交易天数(近似值20,不同于美国股市,A股每年交易天数大约为244天)
normal_days = 31
business_days = int(0.66 * normal_days)


def get_rm_rf(earliest_date, symbol='000300'):
    """
    Rm-Rf(市场收益 - 无风险收益)
    基准股票指数收益率 - 国库券1个月收益率
    
Exemplo n.º 6
0
class QuandlBundleTestCase(ZiplineTestCase):
    symbols = 'AAPL', 'BRK_A', 'MSFT', 'ZEN'
    asset_start = pd.Timestamp('2014-01', tz='utc')
    asset_end = pd.Timestamp('2015-01', tz='utc')
    bundle = bundles['quandl']
    calendar = get_calendar(bundle.calendar_name)
    start_date = calendar.first_session
    end_date = calendar.last_session
    api_key = 'ayylmao'
    columns = 'open', 'high', 'low', 'close', 'volume'

    def _expected_data(self, asset_finder):
        sids = {
            symbol: asset_finder.lookup_symbol(
                symbol,
                self.asset_start,
            ).sid
            for symbol in self.symbols
        }

        def per_symbol(symbol):
            df = pd.read_csv(
                test_resource_path('quandl_samples', symbol + '.csv.gz'),
                parse_dates=['Date'],
                index_col='Date',
                usecols=[
                    'Open',
                    'High',
                    'Low',
                    'Close',
                    'Volume',
                    'Date',
                    'Ex-Dividend',
                    'Split Ratio',
                ],
                na_values=['NA'],
            ).rename(
                columns={
                    'Open': 'open',
                    'High': 'high',
                    'Low': 'low',
                    'Close': 'close',
                    'Volume': 'volume',
                    'Date': 'date',
                    'Ex-Dividend': 'ex_dividend',
                    'Split Ratio': 'split_ratio',
                })
            df['sid'] = sids[symbol]
            return df

        all_ = pd.concat(map(per_symbol, self.symbols)).set_index(
            'sid',
            append=True,
        ).unstack()

        # fancy list comprehension with statements
        @list
        @apply
        def pricing():
            for column in self.columns:
                vs = all_[column].values
                if column == 'volume':
                    vs = np.nan_to_num(vs)
                yield vs

        # the first index our written data will appear in the files on disk
        start_idx = (
            self.calendar.all_sessions.get_loc(self.asset_start, 'ffill') + 1)

        # convert an index into the raw dataframe into an index into the
        # final data
        i = op.add(start_idx)

        def expected_dividend_adjustment(idx, symbol):
            sid = sids[symbol]
            return (1 -
                    all_.ix[idx,
                            ('ex_dividend', sid)] / all_.ix[idx - 1,
                                                            ('close', sid)])

        adjustments = [
            # ohlc
            {
                # dividends
                i(24): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(24),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(24, 'AAPL'),
                    )
                ],
                i(87): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(87),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(87, 'AAPL'),
                    )
                ],
                i(150): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(150),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(150, 'AAPL'),
                    )
                ],
                i(214): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(214),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(214, 'AAPL'),
                    )
                ],
                i(31): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(31),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(31, 'MSFT'),
                    )
                ],
                i(90): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(90),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(90, 'MSFT'),
                    )
                ],
                i(222): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(222),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(222, 'MSFT'),
                    )
                ],

                # splits
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=1.0 / 7.0,
                    )
                ],
            },
        ] * (len(self.columns) - 1) + [
            # volume
            {
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=7.0,
                    )
                ],
            }
        ]
        return pricing, adjustments

    def test_bundle(self):
        url_map = merge(
            {
                format_wiki_url(
                    self.api_key,
                    symbol,
                    self.start_date,
                    self.end_date,
                ): test_resource_path('quandl_samples', symbol + '.csv.gz')
                for symbol in self.symbols
            },
            {
                format_metadata_url(self.api_key, n): test_resource_path(
                    'quandl_samples',
                    'metadata-%d.csv.gz' % n,
                )
                for n in (1, 2)
            },
        )
        zipline_root = self.enter_instance_context(tmp_dir()).path
        environ = {
            'ZIPLINE_ROOT': zipline_root,
            'QUANDL_API_KEY': self.api_key,
        }

        with patch_read_csv(url_map, strict=True):
            ingest('quandl', environ=environ)

        bundle = load('quandl', environ=environ)
        sids = 0, 1, 2, 3
        assert_equal(set(bundle.asset_finder.sids), set(sids))

        for equity in bundle.asset_finder.retrieve_all(sids):
            assert_equal(equity.start_date, self.asset_start, msg=equity)
            assert_equal(equity.end_date, self.asset_end, msg=equity)

        sessions = self.calendar.all_sessions
        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            self.columns,
            sessions[sessions.get_loc(self.asset_start, 'bfill')],
            sessions[sessions.get_loc(self.asset_end, 'ffill')],
            sids,
        )
        expected_pricing, expected_adjustments = self._expected_data(
            bundle.asset_finder, )
        assert_equal(actual, expected_pricing, array_decimal=2)

        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            self.columns,
            sessions,
            pd.Index(sids),
        )

        for column, adjustments, expected in zip(self.columns,
                                                 adjustments_for_cols,
                                                 expected_adjustments):
            assert_equal(
                adjustments,
                expected,
                msg=column,
            )
Exemplo n.º 7
0
class QuandlBundleTestCase(WithResponses, ZiplineTestCase):
    symbols = to_symbol(TEST_SIDS)
    start_date = pd.Timestamp('2014-01', tz='utc')
    end_date = pd.Timestamp('2015-01', tz='utc')
    bundle = bundles[TEST_BUNDLE_NAME]
    calendar = get_calendar(bundle.calendar_name)
    columns = 'open', 'high', 'low', 'close', 'volume'

    def _expected_data(self, asset_finder):
        sids = {
            symbol: asset_finder.lookup_symbol(
                symbol,
                None,
            ).sid
            for symbol in self.symbols
        }

        # Load raw data local db.
        data = _raw_data(self.symbols, self.start_date, self.end_date,
                         self.columns)

        all_ = data.set_index(
            'sid',
            append=True,
        ).unstack()

        # fancy list comprehension with statements
        @list
        @apply
        def pricing():
            for column in self.columns:
                vs = all_[column].values
                if column == 'volume':
                    vs = np.nan_to_num(vs)
                yield vs

        # the first index our written data will appear in the files on disk
        start_idx = (
            self.calendar.all_sessions.get_loc(self.start_date, 'ffill') + 1)

        ######修改到此处

        # convert an index into the raw dataframe into an index into the
        # final data
        i = op.add(start_idx)

        def expected_dividend_adjustment(idx, symbol):
            sid = sids[symbol]
            return (1 -
                    all_.ix[idx,
                            ('ex_dividend', sid)] / all_.ix[idx - 1,
                                                            ('close', sid)])

        adjustments = [
            # ohlc
            {
                # dividends
                i(24): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(24),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(24, 'AAPL'),
                    )
                ],
                i(87): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(87),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(87, 'AAPL'),
                    )
                ],
                i(150): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(150),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(150, 'AAPL'),
                    )
                ],
                i(214): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(214),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=expected_dividend_adjustment(214, 'AAPL'),
                    )
                ],
                i(31): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(31),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(31, 'MSFT'),
                    )
                ],
                i(90): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(90),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(90, 'MSFT'),
                    )
                ],
                i(158): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(158),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(158, 'MSFT'),
                    )
                ],
                i(222): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(222),
                        first_col=sids['MSFT'],
                        last_col=sids['MSFT'],
                        value=expected_dividend_adjustment(222, 'MSFT'),
                    )
                ],

                # splits
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=1.0 / 7.0,
                    )
                ],
            },
        ] * (len(self.columns) - 1) + [
            # volume
            {
                i(108): [
                    Float64Multiply(
                        first_row=0,
                        last_row=i(108),
                        first_col=sids['AAPL'],
                        last_col=sids['AAPL'],
                        value=7.0,
                    )
                ],
            }
        ]
        return pricing, adjustments

    def test_bundle(self):
        # # 耗时3秒以内
        ingest(TEST_BUNDLE_NAME)
        bundle = load(TEST_BUNDLE_NAME)
        sids = TEST_SIDS
        assert_equal(set(bundle.asset_finder.sids), set(sids))

        sessions = self.calendar.all_sessions
        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            self.columns,
            sessions[sessions.get_loc(self.start_date, 'bfill')],
            sessions[sessions.get_loc(self.end_date, 'ffill')],
            sids,
        )
        expected_pricing, expected_adjustments = self._expected_data(
            bundle.asset_finder, )
        assert_equal(actual, expected_pricing, array_decimal=2)

        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            self.columns,
            sessions,
            pd.Index(sids),
        )

        for column, adjustments, expected in zip(self.columns,
                                                 adjustments_for_cols,
                                                 expected_adjustments):
            assert_equal(
                adjustments,
                expected,
                msg=column,
            )