Exemplo n.º 1
0
def compute_pre(pwa_system: PiecewiseAffineSys, X: StateCell, input_range: Box,
                target: Box):
    winning_size = np.zeros(target.center.shape)
    start_time = time.time()
    X_new = deepcopy(X)
    cell_list = [X_new]
    while cell_list:
        # if time.time() - start_time > 10:
        #     break
        x = cell_list.pop(0)
        if x.fully_solved():
            # print("hoi")
            continue
        if np.all(x.as_box().get_bounding_box_size() <
                  target.get_bounding_box_size() / 16):
            break
        # print(x.as_box().get_bounding_box_size())
        assert isinstance(x, StateCell)
        # if np.all(x.as_box().get_bounding_box_size() < winning_size / 4):
        #     print("not worth it")
        #     break
        parent_cell = pwa_system.get_parent_cell(x)
        affine_dynamics = parent_cell.get_multistep_dynamics()
        reachable_set = affine_dynamics.compute_reachable_set(
            x.as_box(), input_range)
        if not reachable_set.get_bounding_box().intersects(target):
            # print('boo')
            continue
        cl_dynamics, alpha, feedback_rule = parent_cell.get_closed_loop_dynamics(
            input_range, target)
        x.multi_step_dynamics = deepcopy(affine_dynamics)
        x.closed_loop_dynamics = deepcopy(cl_dynamics)
        assert isinstance(alpha, float)
        if alpha > 0.0:
            x.feedback_control = feedback_rule
        tolerance = (target.get_bounding_box_size() -
                     cl_dynamics.compute_reachable_set(
                         x.as_box()).get_bounding_box_size()) / 2

        success, ctrl = steer(affine_system=affine_dynamics,
                              start_state=x.as_box().center,
                              input_range=(1 - alpha) * input_range,
                              target_state=target.center,
                              tolerance=tolerance)
        # else:
        #     print("no feedback")
        #     success = False

        if success:
            winning_size = np.maximum(winning_size,
                                      x.as_box().get_bounding_box_size())
            x.is_winning = True
            x.feedfwd_control = ctrl
        else:
            if x.has_child():
                cell_list = cell_list + x.children
            else:
                x.split_cell()
                cell_list = cell_list + x.children
    return X_new
Exemplo n.º 2
0
 def __call__(self, x, u):
     if isinstance(x, np.ndarray):
         x = x.reshape(x.size, 1)
         x = Box(np.concatenate((x, x), axis=1))
     if isinstance(u, np.ndarray):
         u = u.reshape(u.size, 1)
         u = Box(np.concatenate((u, u), axis=1))
     assert isinstance(x, Zonotope)
     assert isinstance(u, Zonotope)
     self.compute_reachable_set(x, u)
Exemplo n.º 3
0
 def get_ru(self, input: [Box, np.ndarray]) -> Zonotope:
     if isinstance(input, Box):
         return self.B * input
     elif isinstance(input, np.ndarray):
         output = self.B @ input
         output = output.reshape((len(output), 1))
         output_as_range = np.concatenate((output, output), 1)
         output_box = Box(output_as_range)
         return output_box
     elif isinstance(input, float):
         output = self.B * input
         output = output.reshape((len(output), 1))
         output_as_range = np.concatenate((output, output), 1)
         output_box = Box(output_as_range)
         return output_box
Exemplo n.º 4
0
def get_affine_dynamics(F,
                        state_region: Box,
                        input_region: Box,
                        n_sample=1000):
    samples_x = state_region.sample(n_sample)
    samples_u = input_region.sample(n_sample)
    samples_in = np.concatenate((samples_x, samples_u), axis=0)
    samples_x_plus = F(samples_x, samples_u)
    affine_func = fit_affine_function(input_data=samples_in,
                                      output_data=samples_x_plus)
    affine_system = AffineSys()
    affine_system.init_from_affine_func(affine_func=affine_func,
                                        state_index_list=list(
                                            range(0, state_region.ndim)))
    return affine_system
Exemplo n.º 5
0
 def __init__(self, input_box: Box, state_box: Box, refinement_list: list):
     """
     :param input_box: allowed inputs
     :param state_box: The state space where the hybridization is consturcteed
     :param refinement_list: List of the state dimensions that can be refined during hybridization
     """
     self.state_cell = StateCell(state_box.get_range())
     self.input_box = input_box
     self.state_cell.refinement_list = refinement_list
     self.size = 1
Exemplo n.º 6
0
 def get_parent_cell(self, x: Box) -> StateCell:
     if isinstance(x, np.ndarray):
         x = Box(np.array([[x[0], x[0]], [x[1], x[1]]]))
     elif isinstance(x, StateCell):
         x = x.as_box()
     assert isinstance(x, Box)
     if not self.state_cell.as_box().contains(x):
         print("State out of range")
         return None
     smallest_cell = self.state_cell
     while smallest_cell.has_child():
         children = smallest_cell.children
         found_valid = False
         for ch in children:
             if ch.as_box().contains(x):
                 smallest_cell = ch
                 found_valid = True
                 break
         if not found_valid:
             break
     return smallest_cell
Exemplo n.º 7
0
 def __call__(self, state_box: ztp.Box, input):
     input_usage = np.abs(
         self.feedback_rule) @ state_box.get_bounding_box_size()
     input_usage = np.max(input_usage /
                          self.input_box.get_bounding_box_size())
     if input_usage > self.budget:
         temp_fdb = self.budget / input_usage * self.feedback_rule
     else:
         temp_fdb = self.feedback_rule
     reachset = self.system.compute_reachable_set_cl(
         temp_fdb, state_box, input)
     return reachset
Exemplo n.º 8
0
 def compute_hybridization(self, F, precision: Box, n_time_steps: int,
                           input_box: Box):
     cell_list = [self.state_cell]
     while cell_list:
         cell = cell_list.pop(0)
         cell.dynamics = get_affine_dynamics(F, cell.as_box(), input_box,
                                             2000)
         # cell.multi_step_dynamics = get_multistep_system(cell.dynamics, n_time_steps)
         cell.compute_multistep_affine(F, n_time_steps, input_box)
         if not precision.contains(cell.multi_step_dynamics.W):
             cell.split_cell()
             cell_list = cell_list + cell.children
             self.size += len(cell.children)
Exemplo n.º 9
0
def get_attraction(F: AffineSys, target: Box, input_region: Box, n_steps: int):
    state_region = deepcopy(target)
    F_affine = get_affine_dynamics(F, state_region, input_region)
    F_affine_multi = get_multistep_system(F_affine, n_steps)
    while np.all(F_affine_multi.W.get_bounding_box_size() <
                 target.get_bounding_box_size()):
        F_affine_multi_old = deepcopy(F_affine_multi)
        state_region_old = deepcopy(state_region)
        state_region = 1.1 * state_region
        F_affine = get_affine_dynamics(F, state_region, input_region)
        F_affine_multi = get_multistep_system(F_affine, n_steps)
    F_affine_multi = deepcopy(F_affine_multi_old)
    state_region = deepcopy(state_region_old)
    success, feedback_rule, alpha, closed_loop_system = synthesize_controller(
        F_affine_multi, 1.01 * state_region, input_region, state_region)
    return state_region, feedback_rule
Exemplo n.º 10
0
 def intersects(self, box: ztp.Box):
     state_range = box.get_range()
     state_patch = self.winset.get_patch(state_range)
     if state_patch is not None and np.any(state_patch > 0):
         return True
     return False
Exemplo n.º 11
0
 def is_included(self, box: ztp.Box):
     state_range = box.get_range()
     state_patch = self.winset.get_patch(state_range)
     if state_patch is not None and np.all(state_patch > 0):
         return True
     return False
Exemplo n.º 12
0
def compute_pre2(F, n_time_steps, X: StateCell, input_range: Box, target: Box):
    winning_size = np.zeros(target.center.shape)
    input_range_multi = input_range.get_range()
    input_range_multi = Box(np.tile(input_range_multi, (n_time_steps, 1)))
    X_new = deepcopy(X)
    cell_list = [X_new]
    while cell_list:
        cell = cell_list.pop(0)
        if cell.fully_solved():
            continue
        if np.all(cell.as_box().get_bounding_box_size() <
                  target.get_bounding_box_size() / 16):
            continue
        if np.all(cell.as_box().get_bounding_box_size() < winning_size / 2):
            print("not worth it")
            break
        cell.compute_multistep_affine(F, n_time_steps, input_range)
        assert isinstance(cell.multi_step_dynamics, AffineSys)
        ru = cell.multi_step_dynamics.get_ru(input_range_multi)
        ru_inv = copy(ru)
        ru_inv.center = -ru_inv.center
        pre_target_over = target.minkowski_sum(
            cell.multi_step_dynamics.W).minkowski_sum(ru_inv)
        if np.all(target.get_bounding_box_size() >=
                  cell.multi_step_dynamics.W.get_bounding_box_size()):
            target_under = target.get_bounding_box()
            target_under.generators = target.generators - cell.multi_step_dynamics.W.get_bounding_box(
            ).generators
            target_under.center = target_under.center - cell.multi_step_dynamics.W.center
            pre_target_under = target_under.minkowski_sum(ru_inv)
        else:
            pre_target_under = None
        sub_list = [cell]
        while sub_list:
            sub_cell = sub_list.pop(0)
            if np.all(
                    sub_cell.as_box().get_bounding_box_size() < winning_size /
                    2):
                print("not worth it")
                break
            if np.all(sub_cell.as_box().get_bounding_box_size() <
                      target.get_bounding_box_size() / 16):
                continue
            assert isinstance(sub_cell.multi_step_dynamics, AffineSys)
            rx = sub_cell.multi_step_dynamics.get_rx(sub_cell.as_box())
            if pre_target_over.intersects(rx):
                if pre_target_over.contains(rx):
                    if pre_target_under and pre_target_under.contains(rx):
                        winning_size = np.maximum(
                            winning_size,
                            sub_cell.as_box().get_bounding_box_size())
                        sub_cell.is_winning = True
                    else:
                        sub_cell.split_cell()
                        cell_list = cell_list + sub_cell.children
                else:
                    sub_cell.split_cell()
                    sub_list = sub_list + sub_cell.children
            else:
                continue
    return X_new
Exemplo n.º 13
0
 def as_box(self):
     b = Box(self.range)
     return b
Exemplo n.º 14
0
umax = -umin
x_0 = np.array([1, 1])
run_time = 2
t_range = np.arange(0, run_time, sample_time)
x = deepcopy(x_0)
x_hist = np.zeros((2, len(t_range)))
for i, t in enumerate(t_range):
    x_hist[:, i] = x.reshape((2, ))
    x = F(x, np.array([0]))

# finding invariant set around the upright position
target_point = np.array([0, 0]).reshape((2, 1))
tolerance = np.array([0.2, 0.2]).reshape((2, 1))
target_region = np.concatenate(
    (target_point - tolerance, target_point + tolerance), axis=1)
target_set = Box(target_region)
input_set = Box(np.array([umin, umax]).reshape(1, 2))
affine_system = get_affine_dynamics(F, target_set, input_set)
n_time_steps = 5
multistep_system = get_multistep_system(affine_system=affine_system,
                                        n_time_steps=n_time_steps)
print(multistep_system.W.get_bounding_box_size())
feed_back_law = synthesize_controller(multistep_system, 1.5 * target_set,
                                      input_set, 1 * target_set)

# running the closed loop system

x = deepcopy(x_0)
x_hist = np.zeros((2, len(t_range)))
feed_back_plan = np.zeros((2, 0))
for i, t in enumerate(t_range):