Exemplo n.º 1
0
    def evaluate(self,
                 data,
                 metrics=['mse'],
                 multioutput="uniform_average",
                 batch_size=32):
        '''
        Evaluate the time series pipeline.

        :param data: data can be a TSDataset or data creator(will be supported).
               The TSDataset should follow the same operations as the training
               TSDataset used in AutoTSEstimator.fit.
        :param metrics: list. The evaluation metric name to optimize. e.g. ["mse"]
        :param multioutput: Defines aggregating of multiple output values.
               String in ['raw_values', 'uniform_average']. The value defaults to
               'uniform_average'.
        :param batch_size: predict batch_size, the process will cost more time
               if batch_size is small while cost less memory. The param is only
               effective when data is a TSDataset. The values defaults to 32.
        '''
        _, y = self._tsdataset_to_numpy(data, is_predict=False)
        yhat = self.predict(data, batch_size=batch_size)
        if self._scaler:
            from zoo.chronos.data.utils.scale import unscale_timeseries_numpy
            y = unscale_timeseries_numpy(y, self._scaler, self._scaler_index)
        eval_result = [
            Evaluator.evaluate(m,
                               y_true=y,
                               y_pred=yhat[:y.shape[0]],
                               multioutput=multioutput) for m in metrics
        ]
        return eval_result
Exemplo n.º 2
0
    def unscale_numpy(self, data):
        '''
        Unscale the time series forecaster's numpy prediction result/ground truth.

        :param data: a numpy ndarray with 3 dim whose shape should be exactly the
               same with self.numpy_y.

        :return: the unscaled numpy ndarray.
        '''
        return unscale_timeseries_numpy(data, self.scaler, self.scaler_index)
Exemplo n.º 3
0
 def _unscale_numpy(self, data):
     '''
     unscale the time series forecastor's numpy prediction result/ground truth.
     :param data: a numpy ndarray with 3 dim whose shape should be exactly the
            same with self.numpy_y.
     :return: the unscaled numpy ndarray
     '''
     num_roll_target = len(self.roll_target)
     repeat_factor = len(self._id_list) if self.id_sensitive else 1
     scaler_index = [self.target_col.index(self.roll_target[i])
                     for i in range(num_roll_target)] * repeat_factor
     return unscale_timeseries_numpy(data, self.scaler, scaler_index)
Exemplo n.º 4
0
    def predict(self, data, batch_size=32):
        '''
        Rolling predict with time series pipeline.

        :param data: data can be a TSDataset or data creator(will be supported).
               The TSDataset should follow the same operations as the training
               TSDataset used in AutoTSTrainer.fit.
        :param batch_size: predict batch_size, the process will cost more time
               if batch_size is small while cost less memory.  The param is only
               effective when data is a TSDataset. The values defaults to 32.
        '''
        x, _ = self._tsdataset_to_numpy(data, is_predict=True)
        yhat = self._best_model.predict(x, batch_size=batch_size)
        if self._scaler:
            from zoo.chronos.data.utils.scale import unscale_timeseries_numpy
            yhat = unscale_timeseries_numpy(yhat, self._scaler, self._scaler_index)
        return yhat
Exemplo n.º 5
0
 def _tsdataset_unscale(self, y):
     if self._scaler:
         from zoo.chronos.data.utils.scale import unscale_timeseries_numpy
         y = unscale_timeseries_numpy(y, self._scaler, self._scaler_index)
     return y