Exemplo n.º 1
0
    def test_predict_recommend(self):

        def gen_rand_user_item_feature(user_num, item_num, class_num):
            user_id = random.randint(1, user_num)
            item_id = random.randint(1, item_num)
            rating = random.randint(1, class_num)
            sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating]))
            return UserItemFeature(user_id, item_id, sample)

        model = NeuralCF(200, 80, 5)
        data = self.sc.parallelize(range(0, 50))\
            .map(lambda i: gen_rand_user_item_feature(200, 80, 5))
        predictions = model.predict_user_item_pair(data).collect()
        print(predictions[0])
        recommended_items = model.recommend_for_user(data, max_items=3).collect()
        print(recommended_items[0])
        recommended_users = model.recommend_for_item(data, max_users=4).collect()
        print(recommended_users[0])
Exemplo n.º 2
0
    def test_predict_recommend(self):

        def gen_rand_user_item_feature(user_num, item_num, class_num):
            user_id = random.randint(1, user_num)
            item_id = random.randint(1, item_num)
            rating = random.randint(1, class_num)
            sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating]))
            return UserItemFeature(user_id, item_id, sample)

        model = NeuralCF(200, 80, 5)
        data = self.sc.parallelize(range(0, 50))\
            .map(lambda i: gen_rand_user_item_feature(200, 80, 5))
        predictions = model.predict_user_item_pair(data).collect()
        print(predictions[0])
        recommended_items = model.recommend_for_user(data, max_items=3).collect()
        print(recommended_items[0])
        recommended_users = model.recommend_for_item(data, max_users=4).collect()
        print(recommended_users[0])
Exemplo n.º 3
0
    def _get_embed_ncf(self):
        user_max = self._config["user_max"]
        ncf = NeuralCF(user_count=user_max,
                       item_count=self._config["movie_max"],
                       class_num=self._config["rate_dim"],
                       hidden_layers=[20, 10],
                       include_mf=False)
        loaded = ncf.load_model(self._config["ncf_model_path"])
        user_embed = loaded.get_weights()[0]
        item_embed = loaded.get_weights()[1]

        user_dict = {}
        for i in range(1, self._config["user_max"] + 1):
            user_dict[i] = user_embed[i][:]

        item_dict = {}
        for i in range(1, self._config["movie_max"] + 1):
            item_dict[i] = item_embed[i][:]
        return (user_dict, item_dict)
Exemplo n.º 4
0
def build_sample(user_id, item_id, rating):
    sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating]))
    return UserItemFeature(user_id, item_id, sample)
pairFeatureRdds = sc.parallelize(movielens_data)\
    .map(lambda x: build_sample(x[0], x[1], x[2]-1))
pairFeatureRdds.take(3)
trainPairFeatureRdds, valPairFeatureRdds = pairFeatureRdds.randomSplit([0.8, 0.2], seed= 1)
valPairFeatureRdds.cache()
train_rdd= trainPairFeatureRdds.map(lambda pair_feature: pair_feature.sample)
val_rdd= valPairFeatureRdds.map(lambda pair_feature: pair_feature.sample)
val_rdd.persist()

ncf = NeuralCF(user_count=max_user_id,
               item_count=max_movie_id,
               class_num=5,
               hidden_layers=[20, 10],
               include_mf = False)

ncf.compile(optimizer= "adam",
            loss= "sparse_categorical_crossentropy",
            metrics=['accuracy'])

ncf.fit(train_rdd,
        nb_epoch= 10,
        batch_size= 8000,
        validation_data=val_rdd)

ncf.save_model("../save_model/movie_ncf.zoomodel", over_write=True)
#
weights = ncf.get_weights()
Exemplo n.º 5
0
 def test_save_load(self):
     model = NeuralCF(10000, 2000, 10)
     input_data = np.random.randint(1500, size=(300, 2))
     self.assert_save_load(model, input_data)
Exemplo n.º 6
0
 def test_forward_backward_with_mf(self):
     model = NeuralCF(10, 10, 5, 5, 5)
     input_data = np.random.randint(10, size=(3, 2))
     self.assert_forward_backward(model, input_data)
Exemplo n.º 7
0
 def test_forward_backward_without_mf(self):
     model = NeuralCF(30, 12, 2, include_mf=False)
     input_data = np.random.randint(10, size=(10, 2))
     self.assert_forward_backward(model, input_data)
Exemplo n.º 8
0
    def test_compile_fit(self):
        def gen_rand_user_item_feature(user_num, item_num, class_num):
            user_id = random.randint(1, user_num)
            item_id = random.randint(1, item_num)
            rating = random.randint(1, class_num)
            sample = Sample.from_ndarray(np.array([user_id, item_id]),
                                         np.array([rating]))
            return UserItemFeature(user_id, item_id, sample)

        model = NeuralCF(200, 80, 5)
        model.summary()
        data = self.sc.parallelize(range(0, 50)) \
            .map(lambda i: gen_rand_user_item_feature(200, 80, 5)) \
            .map(lambda pair: pair.sample)
        model.compile(
            optimizer="adam",
            loss=SparseCategoricalCrossEntropy(zero_based_label=False),
            metrics=['accuracy'])
        tmp_log_dir = create_tmp_path()
        model.set_tensorboard(tmp_log_dir, "training_test")
        model.fit(data, nb_epoch=1, batch_size=32, validation_data=data)
        train_loss = model.get_train_summary("Loss")
        val_loss = model.get_validation_summary("Loss")
        print(np.array(train_loss))
        print(np.array(val_loss))
Exemplo n.º 9
0
 def test_forward_backward_without_mf(self):
     model = NeuralCF(30, 12, 2, include_mf=False)
     model.summary()
     input_data = np.random.randint(10, size=(10, 2))
     self.assert_forward_backward(model, input_data)
Exemplo n.º 10
0
def build_sample(user_id, item_id, rating):
    sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating]))
    return UserItemFeature(user_id, item_id, sample)
pairFeatureRdds = sc.parallelize(movielens_data).map(lambda x: build_sample(x[0], x[1],x[2]))
pairFeatureRdds.take(3)

# Randomly split the data into train (80%) and validation (20%)
trainPairFeatureRdds, valPairFeatureRdds = pairFeatureRdds.randomSplit([0.8, 0.2], seed= 1)
valPairFeatureRdds.cache()
train_rdd= trainPairFeatureRdds.map(lambda pair_feature: pair_feature.sample)
val_rdd= valPairFeatureRdds.map(lambda pair_feature: pair_feature.sample)
print(train_rdd.count())
train_rdd.take(3)

# Build Model
ncf = NeuralCF(user_count=max_user_id, item_count=max_movie_id, class_num=5, hidden_layers=[20, 10], include_mf = False)

# Setup the Optimizer
optimizer = Optimizer(
    model=ncf,
    training_rdd=train_rdd,
    criterion=ClassNLLCriterion(),
    end_trigger=MaxEpoch(10),
    batch_size=2800,
    optim_method=Adam(learningrate=0.001))

optimizer.set_validation(
    batch_size=2800,
    val_rdd=val_rdd,
    trigger=EveryEpoch(),
    val_method=[MAE(), Loss(ClassNLLCriterion())]