Пример #1
0
def HOGcorr_frameandvec(frame1, vecx, vecy, gradthres=0., vecthres=0., pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, allow_huge=False, regrid=False):
   # Calculates the spatial correlation between frame1 and the vector field described by vecx and vecy using the HOG methods
   #
   # INPUTS
   # frame1 - input map
   # vecx   - x-component of the input vector field
   # vecy   - y-component of the input vector field
   #
   # OUTPUTS
   # hogcorr   -
   # corrframe -

   sf=3. #Number of pixels per kernel FWHM

   pxksz =ksz/pxsz
   pxres =res/pxsz

   sz1=np.shape(frame1)

   if (ksz > 1):
      if (regrid):
         intframe1=congrid(frame1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         intvecx  =congrid(vecx,   [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         intvecy  =congrid(vecy,   [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         if np.array_equal(np.shape(frame1), np.shape(mask1)):
            intmask1=congrid(mask1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
            intmask1[(intmask1 > 0.).nonzero()]=1.
            if np.array_equal(np.shape(frame2), np.shape(mask2)):
               intmask2=congrid(mask2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
               intmask2[(intmask2 > 0.).nonzero()]=1.
      else:
         intframe1=frame1
         intvecx=vecx
         intvecy=vecy
         intmask1=mask1
         intmask2=mask2
      #smoothframe1=convolve_fft(intframe1, Gaussian2DKernel(pxksz), allow_huge=allow_huge)
      smoothframe1=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,0], mode='nearest')
      #grad1=np.gradient(smoothframe1)
      dI1dx=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[1,0], mode='nearest')

   else:
      intframe1=frame1
      smoothframe1=frame1
      intvecx=vecx
      intvecy=vecy
      intmask1=mask1
      intmask2=mask2
      #grad1=np.gradient(intframe1)
      dI1dx=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[1,0], mode='nearest')

   # ========================================================================================================================
   normGrad1=np.sqrt(dI1dx*dI1dx+dI1dy*dI1dy) #np.sqrt(grad1[1]**2+grad1[0]**2)
   normVec=np.sqrt(intvecx*intvecx + intvecy*intvecy)
   bad=np.logical_or(normGrad1 <= gradthres, normVec <= vecthres).nonzero()

   normGrad1[bad]=1.; normVec[bad]=1.;
   #tempphi=np.arctan2(grad1[1]*intvecy-grad1[0]*intvecx, grad1[1]*intvecx+grad1[0]*intvecy)
   tempphi=np.arctan2(dI1dx*intvecy-dI1dy*intvecx, dI1dx*intvecx+dI1dy*intvecy)
   tempphi[bad]=np.nan
   phi=np.arctan(np.tan(tempphi))

   #if np.array_equal(np.shape(frame1), np.shape(mask1)):
   #   if np.array_equal(np.shape(normVec), np.shape(mask2)):
   #      phi[np.logical_or(mask1==0, mask2==0).nonzero()]=np.nan
   #	 good=np.logical_and(mask1 > 0., mask2 > 0.).nonzero()
   #   else:
   #      phi[(mask1==0).nonzero()]=np.nan
   #      good=(mask1 > 0.).nonzero()
   #else:
   #   good=np.isfinite(phi).nonzero()

   corrframe=np.cos(2.*phi)

   if np.array_equal(np.shape(intframe1), np.shape(intmask1)):
      corrframe[(intmask1 == 0.).nonzero()]=np.nan
      if np.array_equal(np.shape(intvecx), np.shape(intmask2)):
         corrframe[(intmask2 == 0.).nonzero()]=np.nan
         good=np.logical_and(np.logical_and(np.isfinite(phi), intmask1 > 0), intmask2 > 0).nonzero()
      else:
         good=np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero()
   else:
         good=np.isfinite(phi).nonzero()
   Zx, s_Zx, meanPhi = HOG_PRS(phi[good])

   #if (wd > 1):
   #   hogcorr, corrframe =HOGvotes_blocks(phi, wd=wd)
   #else:
   #   hogcorr, corrframe =HOGvotes_simple(phi)

   #plt.imshow(phi, origin='lower')
   #plt.colorbar()
   #plt.show()
   #import pdb; pdb.set_trace()

   return Zx, corrframe, smoothframe1
Пример #2
0
def HOGcorr_frame(frame1, frame2, gradthres1=0., gradthres2=0., pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, allow_huge=False, regrid=False):
   # Calculates the spatial correlation between frame1 and frame2 using the HOG methods
   #
   # INPUTS
   # frame1 -
   # frame2 -
   #
   # OUTPUTS
   # hogcorr -
   # corrframe -

   sf=3. #Number of pixels per kernel FWHM

   pxksz =ksz/pxsz
   pxres =res/pxsz

   sz1=np.shape(frame1)

   if (ksz > 1):
      weight=(pxsz/ksz)**2

      if (regrid):
         intframe1=congrid(frame1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         intframe2=congrid(frame2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         if np.array_equal(np.shape(frame1), np.shape(mask1)):
            intmask1=congrid(mask1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
            intmask1[(intmask1 > 0.).nonzero()]=1.
            if np.array_equal(np.shape(frame2), np.shape(mask2)):
               intmask2=congrid(mask2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
               intmask2[(intmask2 > 0.).nonzero()]=1.
      else:
         intframe1=frame1
         intframe2=frame2
         intmask1=mask1
         intmask2=mask2
      smoothframe1=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,0], mode='nearest')
      #convolve_fft(intframe1, Gaussian2DKernel(pxksz), allow_huge=allow_huge)
      smoothframe2=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[0,0], mode='nearest')
      #convolve_fft(intframe2, Gaussian2DKernel(pxksz), allow_huge=allow_huge)
      #grad1=np.gradient(smoothframe1)
      #grad2=np.gradient(smoothframe2)
      dI1dx=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[1,0], mode='nearest')
      dI2dx=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[0,1], mode='nearest')
      dI2dy=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[1,0], mode='nearest')

   else:
      weight=(pxsz/res)**2

      intframe1=frame1
      intframe2=frame2
      intmask1=mask1
      intmask2=mask2
      smoothframe1=frame1
      smoothframe2=frame2
      #grad1=np.gradient(intframe1)
      #grad2=np.gradient(intframe2)
      dI1dx=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[1,0], mode='nearest')
      dI2dx=ndimage.filters.gaussian_filter(frame2, [1, 1], order=[0,1], mode='nearest')
      dI2dy=ndimage.filters.gaussian_filter(frame2, [1, 1], order=[1,0], mode='nearest')

   # Calculation of the relative orientation angles
   #tempphi0=np.arctan2(grad1[1]*grad2[0]-grad1[0]*grad2[1], grad1[0]*grad2[0]+grad1[1]*grad2[1])
   tempphi=np.arctan2(dI1dx*dI2dy-dI1dy*dI2dx, dI1dx*dI2dx+dI1dy*dI2dy)
   phi=np.arctan(np.tan(tempphi))

   # Excluding small gradients
   normGrad1=np.sqrt(dI1dx*dI1dx+dI1dy*dI1dy) #np.sqrt(grad1[1]**2+grad1[0]**2)
   normGrad2=np.sqrt(dI2dx*dI2dx+dI2dy*dI2dy) #np.sqrt(grad2[1]**2+grad2[0]**2)
   bad=np.logical_or(normGrad1 <= gradthres1, normGrad2 <= gradthres2).nonzero()
   phi[bad]=np.nan

   corrframe=phi#np.cos(2.*phi)

   # Excluding masked regions
   if np.array_equal(np.shape(intframe1), np.shape(intmask1)):
      corrframe[(intmask1 == 0.).nonzero()]=np.nan
      if np.array_equal(np.shape(intframe2), np.shape(intmask2)):
         corrframe[(intmask2 == 0.).nonzero()]=np.nan
         good=np.logical_and(np.logical_and(np.isfinite(phi), intmask1 > 0), intmask2 > 0).nonzero()
      else:
         good=np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero()
   else:
         good=np.isfinite(phi).nonzero()

   Zx, s_Zx, meanPhi = HOG_PRS(phi[good])

   wghts=0.*phi[good]+weight

   rvl=circ.descriptive.resultant_vector_length(2.*phi[good], w=wghts)
   can=circ.descriptive.mean(2.*phi[good], w=wghts)/2.
   pz, Z = circ.tests.rayleigh(2.*phi[good],  w=wghts)
   pv, V = circ.tests.vtest(2.*phi[good], 0., w=wghts)

   #if (wd > 1):
   #   hogcorr, corrframe =HOGvotes_blocks(phi, wd=wd)
   #else:
   #   hogcorr, corrframe =HOGvotes_simple(phi)

   circstats=[rvl, Z, V, pz, pv]

   return circstats, corrframe, smoothframe1, smoothframe2
Пример #3
0
def lic(vx0,
        vy0,
        length=8,
        niter=1,
        normalize=True,
        amplitude=False,
        level=0.1,
        scalar=1,
        interpolation='nearest',
        inputmap=None,
        factor=1.):
    # Calculates the line integral convolution representation of the 2D vector field represented by Vx and Vy.
    # INPUTS
    # Vx     - X
    # Vy     - Y
    # length - L

    # Check if the images match
    assert vx0.shape == vy0.shape, "Dimensions of ima2 and ima1 must match"
    sz = np.shape(vx0)

    # Identify bad pixels
    vxbad = np.isnan(vx0).nonzero()
    vybad = np.isnan(vy0).nonzero()

    vx0[vxbad] = 0.
    vy0[vybad] = 0.

    # ===============================================================================================
    if (factor == 1.):
        vx = np.copy(vx0)
        vy = np.copy(vy0)
    else:
        print('[LIC] Warning: rescaling input maps')
        vx = congrid(vx0,
                     np.array([int(factor * sz[0]),
                               int(factor * sz[1])]),
                     method='linear')
        vy = congrid(vy0,
                     np.array([int(factor * sz[0]),
                               int(factor * sz[1])]),
                     method='linear')

    # Assert new shape
    sz = np.shape(vx)

    ni = sz[0]
    nj = sz[1]

    uu = np.sqrt(vx**2 + vy**2)
    ii = (uu == 0.).nonzero()

    if (np.size(ii) > 0):
        uu[ii] = 1.0

    if (normalize):
        ux = vx / uu
        uy = vy / uu
    else:
        ux = vx / np.max(uu)
        uy = vy / np.max(uu)

    if (inputmap is None):
        vl = np.random.rand(ni, nj)
    else:
        vl = inputmap

    xi = np.arange(ni)
    xj = np.arange(nj)

    outvl = np.zeros([niter, ni, nj])

    for i in range(0, niter):

        print('iter {:.0f} / {:.0f}'.format(i + 1, niter))

        texture = vl
        vv = np.zeros([ni, nj])

        pi0, pj0 = np.meshgrid(xi, xj, indexing='ij')
        pi, pj = np.meshgrid(xi, xj, indexing='ij')
        mi = pi
        mj = pj

        ppi = 1. * pi
        ppj = 1. * pj
        mmi = 1. * mi
        mmj = 1. * mj

        pbar = tqdm(total=length)

        for l in range(0, length):

            ppi0 = ppi
            ppj0 = ppj
            points = np.transpose(np.array([pi0.ravel(), pj0.ravel()]))
            outpoints = np.transpose(np.array([ppi.ravel(), ppj.ravel()]))
            dpi = interpolate.griddata(points,
                                       uy.ravel(),
                                       outpoints,
                                       method=interpolation)
            dpj = interpolate.griddata(points,
                                       ux.ravel(),
                                       outpoints,
                                       method=interpolation)

            ppi = ppi0 + 0.25 * np.reshape(dpi, [ni, nj])
            ppj = ppj0 + 0.25 * np.reshape(dpj, [ni, nj])

            mmi0 = mmi
            mmj0 = mmj
            points = np.transpose(np.array([pi0.ravel(), pj0.ravel()]))
            outpoints = np.transpose(np.array([mmi.ravel(), mmj.ravel()]))
            dmi = interpolate.griddata(points,
                                       uy.ravel(),
                                       outpoints,
                                       method=interpolation)
            dmj = interpolate.griddata(points,
                                       ux.ravel(),
                                       outpoints,
                                       method=interpolation)

            mmi = mmi0 - 0.25 * np.reshape(dmi, [ni, nj])
            mmj = mmj0 - 0.25 * np.reshape(dmj, [ni, nj])

            pi = (np.fix(ppi) + ni) % ni
            pj = (np.fix(ppj) + nj) % nj
            mi = (np.fix(mmi) + ni) % ni
            mj = (np.fix(mmj) + nj) % nj

            ppi = pi + (ppi.copy() - np.fix(ppi.copy()))
            ppj = pj + (ppj.copy() - np.fix(ppj.copy()))
            mmi = mi + (mmi.copy() - np.fix(mmi.copy()))
            mmj = mj + (mmj.copy() - np.fix(mmj.copy()))

            points = np.transpose(np.array([pi0.ravel(), pj0.ravel()]))
            outpoints = np.transpose(np.array([ppi.ravel(), ppj.ravel()]))
            tempA = interpolate.griddata(points,
                                         texture.ravel(),
                                         outpoints,
                                         method=interpolation)

            points = np.transpose(np.array([pi0.ravel(), pj0.ravel()]))
            outpoints = np.transpose(np.array([mmi.ravel(), mmj.ravel()]))
            tempB = interpolate.griddata(points,
                                         texture.ravel(),
                                         outpoints,
                                         method=interpolation)

            vv = vv.copy() + np.reshape(tempA, [ni, nj]) + np.reshape(
                tempB, [ni, nj])

            pbar.update()

        pbar.close()

        vl = 0.25 * vv / length

        outvl[i, :, :] = vl

    vl[vxbad] = np.nan
    vl[vybad] = np.nan

    return outvl
Пример #4
0
def rescale_image(slice_original, size_slice, size_output):

    size_original = slice_original.shape
    if size_slice % 2 == 1: size_slice += 1
    size_new = (size_slice, size_slice)
    scale_factor = np.float(size_new[0]) / size_original[0]

    if scale_factor < 1: type = 'compress'
    if scale_factor >= 1: type = 'expand'

    # type == 'expand'

    if type == 'compress':
        # print ' Applying Congrid  {0} -> {1}'.format( size_original, size_new )
        slice_scaled = congrid(slice_original,
                               size_new,
                               method='linear',
                               centre=True)
        # print slice_scaled.shape

    if type == 'expand':
        zoom_factor = scale_factor
        # print ' Applying Zoom  {0} -> {1}'.format( size_original, size_new )
        slice_scaled = scipy.ndimage.zoom(slice_original, zoom_factor, order=1)
        # print slice_scaled.shape

    # Create Periodic full slice
    slice_full = np.zeros(size_output)
    size_output_x, size_output_y = size_output
    size_new_x, size_new_y = size_new

    # if size_output_x > size_new_x: type = 'compress'
    # else: type = 'expand'

    type = 'compress'

    if type == 'compress':
        center_values = np.array(
            [[size_output_x / 2, size_output_y / 2],
             [size_output_x / 2 - size_new_x, size_output_y / 2],
             [size_output_x / 2 + size_new_x, size_output_y / 2],
             [size_output_x / 2, size_output_y / 2 - size_new_y],
             [size_output_x / 2, size_output_y / 2 + size_new_y],
             [size_output_x / 2 - size_new_x, size_output_y / 2 - size_new_y],
             [size_output_x / 2 - size_new_x, size_output_y / 2 + size_new_y],
             [size_output_x / 2 + size_new_x, size_output_y / 2 - size_new_y],
             [size_output_x / 2 + size_new_x, size_output_y / 2 + size_new_y]])

        for center in center_values:
            center_x, center_y = center
            edge_x_l, edge_x_r = center_x - size_new_x / 2, center_x + size_new_x / 2
            edge_y_l, edge_y_r = center_y - size_new_y / 2, center_y + size_new_y / 2
            # print ''
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, edge_x_l, edge_x_r, edge_y_l, edge_y_r )
            if edge_x_l < 0:
                offset_x_l = -edge_x_l
                edge_x_l = 0
            else:
                offset_x_l = 0
            if edge_x_r >= size_output_x:
                offset_x_r = size_output_x / 2 - size_new_x / 2
                edge_x_r = size_output_x
            else:
                offset_x_r = size_new_x

            if edge_y_l < 0:
                offset_y_l = -edge_y_l
                edge_y_l = 0
            else:
                offset_y_l = 0
            if edge_y_r >= size_output_y:
                offset_y_r = size_output_y / 2 - size_new_y / 2
                edge_y_r = size_output_y
            else:
                offset_y_r = size_new_y
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, edge_x_l, edge_x_r, edge_y_l, edge_y_r )
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, offset_x_l, offset_x_r, offset_y_l, offset_y_r )
            slice_full[edge_x_l:edge_x_r,
                       edge_y_l:edge_y_r] = slice_scaled[offset_x_l:offset_x_r,
                                                         offset_y_l:offset_y_r]

    if type == 'expand':
        center_values = np.array([[size_output_x / 2, size_output_y / 2]])
        for center in center_values:
            center_x, center_y = center
            edge_x_l, edge_x_r = center_x - size_new_x / 2, center_x + size_new_x / 2
            edge_y_l, edge_y_r = center_y - size_new_y / 2, center_y + size_new_y / 2
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, edge_x_l, edge_x_r, edge_y_l, edge_y_r )
            if edge_x_l < 0:
                offset_x_l = size_new_x / 2 - size_output_x / 2
                edge_x_l = 0
            else:
                offset_x_l = 0
            if edge_x_r >= size_output_x:
                offset_x_r = offset_x_l + size_output_x
                edge_x_r = size_output_x
            else:
                offset_x_r = size_new_x

            if edge_y_l < 0:
                offset_y_l = size_new_y / 2 - size_output_y / 2
                edge_y_l = 0
            else:
                offset_y_l = 0
            if edge_y_r >= size_output_y:
                offset_y_r = offset_y_l + size_output_y
                edge_y_r = size_output_y
            else:
                offset_y_r = size_new_y
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, edge_x_l, edge_x_r, edge_y_l, edge_y_r )
            # print ' {0},  [ {1}, {2} ]  [ {3}, {4} ]'.format( center, offset_x_l, offset_x_r, offset_y_l, offset_y_r )

            # print slice_scaled[offset_x_l: offset_x_r, offset_y_l: offset_y_r].shape
            slice_full[edge_x_l:edge_x_r,
                       edge_y_l:edge_y_r] = slice_scaled[offset_x_l:offset_x_r,
                                                         offset_y_l:offset_y_r]

    return slice_full
Пример #5
0
def HOGcorr_frameandvec(frame1, vecx, vecy, gradthres=0., vecthres=0., pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, allow_huge=False, regrid=False):
   # Calculates the spatial correlation between frame1 and the vector field described by vecx and vecy using the HOG methods
   #
   # INPUTS
   # frame1 - input map 
   # vecx   - x-component of the input vector field
   # vecy   - y-component of the input vector field
   #
   # OUTPUTS
   # hogcorr   -   
   # corrframe -

   sf=3. #Number of pixels per kernel FWHM      

   pxksz=(ksz/(2*np.sqrt(2.*np.log(2.))))/pxsz #gaussian_filter takes sigma instead of FWHM as input
   pxres =res/pxsz

   sz1=np.shape(frame1)

   if (ksz > 1):
      if (regrid):
         intframe1=congrid(frame1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         intvecx  =congrid(vecx,   [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         intvecy  =congrid(vecy,   [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
         if np.array_equal(np.shape(frame1), np.shape(mask1)):
            intmask1=congrid(mask1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
            intmask1[(intmask1 > 0.).nonzero()]=1.
            if np.array_equal(np.shape(frame2), np.shape(mask2)):
               intmask2=congrid(mask2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))])
               intmask2[(intmask2 > 0.).nonzero()]=1.
      else:
         intframe1=frame1
         intvecx=vecx
         intvecy=vecy
         intmask1=mask1
         intmask2=mask2
      smoothframe1=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,0], mode='nearest')
      dI1dx=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[1,0], mode='nearest')

   else:
      intframe1=frame1
      smoothframe1=frame1
      intvecx=vecx
      intvecy=vecy
      intmask1=mask1
      intmask2=mask2
      #grad1=np.gradient(intframe1)
      dI1dx=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[0,1], mode='nearest')
      dI1dy=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[1,0], mode='nearest')

   # ========================================================================================================================
   normGrad1=np.sqrt(dI1dx*dI1dx+dI1dy*dI1dy) #np.sqrt(grad1[1]**2+grad1[0]**2)
   normVec=np.sqrt(intvecx*intvecx + intvecy*intvecy)
   bad=np.logical_or(normGrad1 <= gradthres, normVec <= vecthres).nonzero()

   normGrad1[bad]=1.; normVec[bad]=1.;
   tempphi=np.arctan2(dI1dx*intvecy-dI1dy*intvecx, dI1dx*intvecx+dI1dy*intvecy)
   tempphi[bad]=np.nan
   phi=np.arctan(np.tan(tempphi))

   corrframe=np.cos(2.*phi)

   if np.array_equal(np.shape(intframe1), np.shape(intmask1)):
      corrframe[(intmask1 == 0.).nonzero()]=np.nan
      if np.array_equal(np.shape(intvecx), np.shape(intmask2)):
         corrframe[(intmask2 == 0.).nonzero()]=np.nan
         good=np.logical_and(np.logical_and(np.isfinite(phi), intmask1 > 0), intmask2 > 0).nonzero()
      else:
         good=np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero()
   else:
         good=np.isfinite(phi).nonzero()
   #Zx, s_Zx, meanPhi = HOG_PRS(phi[good])
   output=HOG_PRS(2.*phi[good], w=weights[good])
   Zx=output['Zx']
   s_Zx=output['s_Zx']
   meanPhi=output['meanphi']

   return Zx, corrframe, smoothframe1
Пример #6
0
def HOGcorr_frame(frame1,
                  frame2,
                  gradthres=0.,
                  pxsz=1.,
                  ksz=1.,
                  res=1.,
                  mask1=0,
                  mask2=0,
                  wd=1,
                  allow_huge=False,
                  regrid=False):
    # Calculates the spatial correlation between frame1 and frame2 using the HOG methods
    #
    # INPUTS
    # frame1 -
    # frame2 -
    #
    # OUTPUTS
    # hogcorr -
    # corrframe -

    sf = 3.  #Number of pixels per kernel FWHM

    pxksz = ksz / pxsz
    pxres = res / pxsz

    sz1 = np.shape(frame1)

    if (ksz > 1):
        if (regrid):
            intframe1 = congrid(frame1, [
                np.int(np.round(sf * sz1[0] / pxres)),
                np.int(np.round(sf * sz1[1] / pxres))
            ])
            intframe2 = congrid(frame2, [
                np.int(np.round(sf * sz1[0] / pxres)),
                np.int(np.round(sf * sz1[1] / pxres))
            ])
            if np.array_equal(np.shape(frame1), np.shape(mask1)):
                intmask1 = congrid(mask1, [
                    np.int(np.round(sf * sz1[0] / pxres)),
                    np.int(np.round(sf * sz1[1] / pxres))
                ])
                intmask1[(intmask1 > 0.).nonzero()] = 1.
                if np.array_equal(np.shape(frame2), np.shape(mask2)):
                    intmask2 = congrid(mask2, [
                        np.int(np.round(sf * sz1[0] / pxres)),
                        np.int(np.round(sf * sz1[1] / pxres))
                    ])
                    intmask2[(intmask2 > 0.).nonzero()] = 1.
        else:
            intframe1 = frame1
            intframe2 = frame2
            intmask1 = mask1
            intmask2 = mask2
        smoothframe1 = convolve_fft(intframe1,
                                    Gaussian2DKernel(pxksz),
                                    allow_huge=allow_huge)
        smoothframe2 = convolve_fft(intframe2,
                                    Gaussian2DKernel(pxksz),
                                    allow_huge=allow_huge)
        grad1 = np.gradient(smoothframe1)
        grad2 = np.gradient(smoothframe2)
    else:
        intframe1 = frame1
        intframe2 = frame2
        intmask1 = mask1
        intmask2 = mask2
        smoothframe1 = frame1
        smoothframe2 = frame2
        grad1 = np.gradient(intframe1)
        grad2 = np.gradient(intframe2)

    # Calculation of the relative orientation angles
    tempphi = np.arctan2(grad1[0] * grad2[1] - grad1[1] * grad2[0],
                         grad1[0] * grad2[0] + grad1[1] * grad2[1])
    phi = np.arctan(np.tan(tempphi))

    # Excluding small gradients
    normGrad1 = np.sqrt(grad1[1]**2 + grad1[0]**2)
    normGrad2 = np.sqrt(grad2[1]**2 + grad2[0]**2)
    bad = np.logical_or(normGrad1 <= gradthres,
                        normGrad2 <= gradthres).nonzero()
    phi[bad] = np.nan

    corrframe = np.cos(2. * phi)

    # Excluding masked regions
    if np.array_equal(np.shape(intframe1), np.shape(intmask1)):
        corrframe[(intmask1 == 0.).nonzero()] = np.nan
        if np.array_equal(np.shape(intframe2), np.shape(intmask2)):
            corrframe[(intmask2 == 0.).nonzero()] = np.nan
            good = np.logical_and(
                np.logical_and(np.isfinite(phi), intmask1 > 0),
                intmask2 > 0).nonzero()
        else:
            good = np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero()
    else:
        good = np.isfinite(phi).nonzero()

    Zx, s_Zx, meanPhi = HOG_PRS(phi[good])

    #if (wd > 1):
    #   hogcorr, corrframe =HOGvotes_blocks(phi, wd=wd)
    #else:
    #   hogcorr, corrframe =HOGvotes_simple(phi)

    #plt.imshow(mask1, origin='lower')
    #plt.colorbar()
    #plt.show()
    #import pdb; pdb.set_trace()

    return Zx, corrframe, smoothframe1, smoothframe2