Пример #1
0
def run():

    # Make sure necessary directories exist
    if not os.path.exists('tracks'):
        os.makedirs('tracks')
    if not os.path.exists('figures'):
        os.makedirs('figures')

    overallstartdate = datetime(2004, 1, 1, 0, 1)
    overallstopdate = datetime(2004, 1, 2, 0, 1)
    # overallstopdate = datetime(2014, 7, 1, 4, 1)

    date = overallstartdate

    # Start from the beginning and add days on for loop
    # keep running until we hit the next month
    while date < overallstopdate:

        name = date.isoformat()[0:13]

        # If the particle trajectories have not been run, run them
        if not os.path.exists('tracks/' + name + '.nc') and \
            not os.path.exists('tracks/' + name + 'gc.nc'):

            # Read in simulation initialization
            tp, lon0, lat0 = init(name)

            # Run tracpy
            # Save directly to grid coordinates
            lonp, latp, zp, t, T0, U, V = tracpy.run.run(tp, date, lon0, lat0)

        # Increment by 24 hours for next loop, to move through more quickly
        date = date + timedelta(hours=24)
Пример #2
0
def run():

    # Make sure necessary directories exist
    if not os.path.exists('tracks'):
        os.makedirs('tracks')
    if not os.path.exists('tracks/driftcards'):
        os.makedirs('tracks/driftcards')
    if not os.path.exists('figures'):
        os.makedirs('figures')
    if not os.path.exists('figures/driftcards'):
        os.makedirs('figures/driftcards')

    grid = tracpy.inout.readgrid(loc)

    ndriftmodel = 1000 # do 1000 drifters for each set of driftcards

    # Read in deployment info and eliminate outside domain
    ndrift = 3490 # number of driftcards deployed
    # These are drift cards that start in numerical domain
    startdate, startlon, startlat, idnum = readThenReduce(grid, ndrift)

    # Find unique start dates and indices for start dates
    dates, idates = np.unique(startdate, return_index=True)

    # Loop through deployments
    for i, date in enumerate(dates):

        idate = idates[i] # Index in arrays
        lon0 = np.ones(ndriftmodel)*startlon[idate]
        lat0 = np.ones(ndriftmodel)*startlat[idate]

        # pdb.set_trace()

        # Initialize parameters
        nsteps, N, ndays, ff, tseas, ah, av, z0, zpar, \
            do3d, doturb, dostream, T0, U, V = init(grid, date, lon0, lat0)

        # pdb.set_trace()

        date = netCDF.num2date(date, units)

        # # start drifters in chunks of exact same date/time
        # # idrift = 0
        # # tdrift = startdate[idrift] #drifter time
        # idrifts = find(startdate==startdate[find(~np.isnan(startdate))[0]]) # all drifters with same start date/time
        # lon0 = startlon[idrifts]
        # lat0 = startlat[idrifts]
        # date = netCDF.num2date(startdate[idrifts][0], units)

        # pdb.set_trace()

        name = 'driftcards/' + date.isoformat()

        # Run tracpy
        lonp, latp, zp, t, grid, T0, U, V \
            = tracpy.run.run(loc, nsteps, ndays, ff, date, tseas, ah, av, \
                                lon0, lat0, z0, zpar, do3d, doturb, name, N=N, \
                                grid=grid, dostream=dostream, T0=T0, U=U, V=V)
Пример #3
0
def run(rootdir, ndrifters):

    # Start date in date time formatting
    date = datetime(2013, 12, 19, 0)

    # Simulation initialization
    itime = time.time()
    tp, x0, y0 = init(rootdir, ndrifters)

    print '\nAdditional time for initialization:%4.4f\n' % (time.time() - itime)

    xp, yp, zp, t, T0, U, V = tracpy.run.run(tp, date, x0, y0)
Пример #4
0
def main():
    black = (0, 0, 0)
    size = width, height = 800, 600

    print 'Initializing pygame...'
    screen = init(size)

    settings = Settings()

    player = Player(None)
    window = MainMenu(player)

    if PROFILE:
        pr = cProfile.Profile()
        pr.enable()
        
    running = True
    while running:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                running = False
            elif event.type == pygame.KEYDOWN:
                window.key_pressed(event.key)
            elif event.type == pygame.KEYUP:
                window.key_released(event.key)
        
        window.update()
        screen.fill(black)
        window.display(screen)
        pygame.display.flip()

        if window.child is not None:
            window = window.child
        if window.done:
            window = window.parent
            if window is None:
                running = False

    if PROFILE:
        pr.disable()
        sort_by = 'cumulative'
        ps = pstats.Stats(pr).strip_dirs().sort_stats(sort_by)
        ps.print_stats()
        ps.print_callers()

    pygame.quit()
Пример #5
0
def main():
    global font
    
    black = (0, 0, 0)
    red = (255, 0, 0)
    blue = (0, 0, 255)
    white = (255, 255, 255)
    size = width, height = 800, 600

    screen = init(size)

    settings = Settings()
    global_font = pygame.font.Font(pygame.font.get_default_font(), FONT_SIZE)
    
    running = True
    while running:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                running = False
            elif event.type == pygame.KEYDOWN:
                if event.key == pygame.K_ESCAPE:
                    running = False

        screen.fill(black)

        pygame.draw.line(screen, blue, (0, 0), (width, height))
        pygame.draw.line(screen, blue, (0, height), (width, 0))
        
        pos = pygame.mouse.get_pos()
        vec = vector(pos) - vector(size) / 2
        dir = get_dir(size, vec)
        intersection = get_intersection(size, vec)

        dims = vector(10, 10)
        rect = intersection - dims / 2
        rect = rect.list() + dims.list()
        center = (width / 2, height / 2)
        pygame.draw.rect(screen, red, rect, 1)
        pygame.draw.line(screen, red, center, intersection.list())

        draw_string(screen, dir, (10, 10), white)
        
        pygame.display.flip()

    pygame.quit()
Пример #6
0
def run():

    # Make sure necessary directories exist
    if not os.path.exists('tracks'):
        os.makedirs('tracks')
    if not os.path.exists('tracks/gyre'):
        os.makedirs('tracks/gyre')
    if not os.path.exists('figures'):
        os.makedirs('figures')
    if not os.path.exists('figures/gyre'):
        os.makedirs('figures/gyre')

    # Location of TXLA model output
    loc = 'projects/gyre/'# 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'

    # Read in grid
    grid = tracpy.inout.readgrid(loc)

    # Read in simulation initialization
    nsteps, ndays, ff, tseas, ah, av, lon0, lat0, \
            z0, zpar, do3d, doturb, dostream, name = init()

    # Create gyre field velocities if don't exist yet
    uv(grid, ndays)

    # Start from the beginning and add days on for loop
    date = datetime(2012, 5, 23, 0, 0)
    # pdb.set_trace()
    # Run tracpy
    loc = 'projects/gyre/' # loc for model output
    lonp, latp, zp, t, grid \
        = tracpy.run.run(loc, nsteps, ndays, ff, date, tseas, ah, av, \
                            lon0, lat0, z0, zpar, do3d, doturb, name, \
                            grid=grid, dostream=dostream)

    # Read in and plot tracks
    d = netCDF.Dataset('tracks/' + name + '.nc')
    lonp = d.variables['lonp'][:]
    latp = d.variables['latp'][:]
    tracpy.plotting.tracks(lonp, latp, name, grid=grid)
    tracpy.plotting.hist(lonp, latp, name, grid=grid, which='hexbin')
    d.close()
Пример #7
0
    def fitShape(self, img):
        if img is None:
            print "invalid img!"
            return
        if self.__mPfCalcLocalProfile is None:
            print "unkown local profile Caculator!You should define or specify it."
            print "use ::setLocalProfileFun(pfCalcLocalProfile)"
            return
        self.__mImg = img
        minProfileDist = 1000000
        scale = 1.0
        (h, w, channel) = img.shape
        minSumDist = 10000000
        bestScale = 0.0
        bestShape = None

        for i in range(3):
            curImg = cv2.resize(img, (int(scale * w), int(scale * h)))
            curMeanShape = copy.deepcopy(self.meanShape) * scale
            curPcaMatrix = copy.deepcopy(self.pcaMatrix) * scale
            initShape = init(curImg, self.face_cascade, self.eye_cascade,
                             curMeanShape)
            targetShape, sumDist = self.__match(curImg, initShape,
                                                curMeanShape,
                                                self.average_profile[i],
                                                self.sgVec[i], curPcaMatrix,
                                                self.__mSeachWindowWd, 1.0)

            if sumDist < minSumDist:
                bestScale = scale
                minSumDist = sumDist
                bestShape = targetShape

            # print "scale:",scale," ",sumDist
            scale /= float(2.0)
        # print "Best Scale: ",bestScale

        self.__fittingResult = bestShape / float(bestScale)

        return minSumDist
Пример #8
0
def main():
    num_args = len(sys.argv)
    if num_args < 2:
        print "Usage: python main.py [instance] [plot] [iterations]"
        sys.exit()

    f = sys.argv[1]
    output = os.path.splitext(f)[0] + '.out'
    draw = False
    iterations = 10
    if num_args > 3:
        draw = (sys.argv[2] == "True")
        iterations = int(sys.argv[3])

    tour_manager = init(f)

    def run(num):
        #        print "Running iteration %d" % (num + 1)
        return ga.ga_sol(tour_manager, 100, 50, 300)

    result = map(run, range(iterations))
    process_result(result, draw, iterations, output)
Пример #9
0
	def fitShape(self,img):
		if img is None:
			print "invalid img!"
			return
		if self.__mPfCalcLocalProfile is None:
			print "unkown local profile Caculator!You should define or specify it."
			print "use ::setLocalProfileFun(pfCalcLocalProfile)"
			return
		self.__mImg=img
		minProfileDist=1000000
		scale=1.0
		(h,w,channel)=img.shape
		minSumDist=10000000
		bestScale=0.0
		bestShape=None

		for i in range(3):
			curImg=cv2.resize(img,(int(scale*w),int(scale*h)))
			curMeanShape=copy.deepcopy(self.meanShape)*scale
			curPcaMatrix=copy.deepcopy(self.pcaMatrix)*scale
			initShape=init(curImg,self.face_cascade,self.eye_cascade,curMeanShape)
			targetShape,sumDist=self.__match(curImg,initShape,curMeanShape,self.average_profile[i],self.sgVec[i],curPcaMatrix,self.__mSeachWindowWd,1.0)
	
			if sumDist<minSumDist:
				bestScale=scale
				minSumDist=sumDist
				bestShape=targetShape

			# print "scale:",scale," ",sumDist
			scale/=float(2.0)
		# print "Best Scale: ",bestScale


		self.__fittingResult=bestShape/float(bestScale)

		return minSumDist
Пример #10
0
def _main():
    Lag,Nx,Ny,lx,ly,Load,Name,ds,bcd,mesh,phi_mat,Vvec=init(sys.argv[1])      
    eps_er, E, nu = [0.001, 1.0, 0.3]  # Elasticity parameters
    mu,lmbda = Constant(E/(2*(1 + nu))),Constant(E*nu/((1+nu)*(1-2*nu)))
    # Create folder for saving files
    rd = os.path.join(os.path.dirname(__file__),\
     Name +'/LagVol=' +str(np.int_(Lag))+'_Nx='+str(Nx))
    if not os.path.isdir(rd): os.makedirs(rd) 
    # Line search parameters
    beta0_init,ls,ls_max,gamma,gamma2 = [0.5,0,3,0.8,0.8]   
    beta0 = beta0_init
    beta  = beta0
    # Stopping criterion parameters    
    ItMax,It,stop = [int(1.5*Nx), 0, False] 
    # Cost functional and function space
    J = np.zeros( ItMax )  
    V = FunctionSpace(mesh, 'CG', 1)
    VolUnit = project(Expression('1.0',degree=2),V) # to compute volume 
    U = [0]*len(Load) # initialize U
    # Get vertices coordinates 
    gdim     = mesh.geometry().dim()
    dofsV    = V.tabulate_dof_coordinates().reshape((-1, gdim))    
    dofsVvec = Vvec.tabulate_dof_coordinates().reshape((-1, gdim))     
    px,py    = [(dofsV[:,0]/lx)*2*Nx, (dofsV[:,1]/ly)*2*Ny]
    pxvec,pyvec = [(dofsVvec[:,0]/lx)*2*Nx, (dofsVvec[:,1]/ly)*2*Ny]  
    dofsV_max, dofsVvec_max =((Nx+1)*(Ny+1) + Nx*Ny)*np.array([1,2])    
    # Initialize phi  
    phi = Function( V )  
    phi = _comp_lsf(px,py,phi,phi_mat,dofsV_max) 
    # Define Omega = {phi<0}     
    class Omega(SubDomain):
        def inside(self, x, on_boundary):
            return .0 <= x[0] <= lx and .0 <= x[1] <= ly and phi(x) < 0
    domains = MeshFunction("size_t", mesh, mesh.topology().dim())
    dX = Measure('dx')
    n  = FacetNormal(mesh)
    # Define solver to compute descent direction th
    theta,xi = [TrialFunction(Vvec), TestFunction( Vvec)]     
    av = assemble((inner(grad(theta),grad(xi)) +0.1*inner(theta,xi))*dX\
         + 1.0e4*(inner(dot(theta,n),dot(xi,n)) * (ds(0)+ds(1)+ds(2))) ) 
    solverav = LUSolver(av)

    #---------- MAIN LOOP ----------------------------------------------
    while It < ItMax and stop == False:
        # Update and tag Omega = {phi<0}, then solve elasticity system.  
        omega = Omega()
        domains.set_all(0)
        omega.mark(domains, 1)
        dx = Measure('dx')(subdomain_data = domains)   
        for k in range(0,len(Load)):   
            U[k] = _solve_pde(Vvec,dx,ds,eps_er,bcd,mu,lmbda,Load[k])      
        # Update cost functional 
        compliance = 0
        for u in U:
            eU = sym(grad(u))
            S1 = 2.0*mu*inner(eU,eU) + lmbda*tr(eU)**2
            compliance += assemble( eps_er*S1* dx(0) + S1*dx(1) )  
        vol = assemble( VolUnit*dx(1) )          
        J[It]  = compliance + Lag * vol                            
        # ------- LINE SEARCH ------------------------------------------
        if It > 0 and J[It] > J[It-1] and ls < ls_max:
            ls   += 1
            beta *= gamma            
            phi_mat,phi = [phi_mat_old,phi_old]
            phi_mat = _hj(th_mat, phi_mat, lx,ly,Nx, Ny, beta)
            phi     = _comp_lsf(px,py,phi,phi_mat,dofsV_max) 
            print('Line search iteration : %s' % ls)           
        else:          
            print('************ ITERATION NUMBER %s' % It)                   
            print('Function value        : %.2f' % J[It])
            print('Compliance            : %.2f' % compliance)
            print('Volume fraction       : %.2f' % (vol/(lx*ly))) 
            # Decrease or increase line search step
            if ls == ls_max: beta0 = max(beta0 * gamma2, 0.1*beta0_init)  
            if ls == 0:      beta0 = min(beta0 / gamma2, 1)
            # Reset beta and line search index    
            ls,beta,It = [0,beta0, It+1]
            # Compute the descent direction th           
            th = _shape_der(Vvec,U,eps_er,mu,lmbda,dx,solverav,Lag)
            th_array = th.vector().get_local()
            th_mat = [np.zeros((Ny+1,Nx+1)),np.zeros((Ny+1,Nx+1))]          
            for dof in range(0, dofsVvec_max,2):
                if np.rint(pxvec[dof]) %2 == .0:
                    cx,cy= np.int_(np.rint([pxvec[dof]/2,pyvec[dof]/2]))
                    th_mat[0][cy,cx] = th_array[dof]
                    th_mat[1][cy,cx] = th_array[dof+1]                           
            # Update level set function phi using descent direction th
            phi_old, phi_mat_old = [phi, phi_mat]            
            phi_mat = _hj(th_mat, phi_mat, lx,ly,Nx,Ny, beta)
            if np.mod(It,5) == 0: phi_mat = _reinit(lx,ly,Nx,Ny,phi_mat)     
            phi = _comp_lsf(px,py,phi,phi_mat,dofsV_max)                      
            #------------ STOPPING CRITERION ---------------------------
            if It>20 and max(abs(J[It-5:It]-J[It-1]))<2.0*J[It-1]/Nx**2: 
                stop = True  
            #------------ Plot Geometry --------------------------------  
            if np.mod(It,10)==0 or It==1 or It==ItMax or stop==True:   
                pp.close(); ax = pp.subplot()  
                ax.contourf(phi_mat,[-10.0,.0],extent = [.0,lx,.0,ly],\
                 cmap=cm.get_cmap('bone'))
                ax.set_aspect('equal','box')
                pp.show()
                pp.savefig(rd+'/it_'+str(It)+'.pdf',bbox_inches='tight')             
    return
Пример #11
0
import os

sim_time = 60 * 1000 * 20
upper_bound = 5
lower_bound = 1
lsw = 1
lpw = 50
cur_time = 0
CORES = 4
reliability_list = []

T_setpoint = 60
U_setpoint = 0.66

exp_funcs = extfuncs(upper_bound, lower_bound, T_setpoint)
exp_system = init(CORES, sys.argv[-2])
os.system("cp ./hotspot/hotspot.sample.init ./hotspot/hotspot.init")

#exp_system.print_hardware()

while cur_time < sim_time:
	for core_idx in range(0, CORES):
		exp_system.core_set[core_idx].run(cur_time)

	if cur_time % (lsw * 1000) == 0:
		exp_system.DVFS(lsw, exp_funcs)

	if cur_time % (lsw * lpw * 1000) == 0:
		exp_system.get_temperature()
		reliability_list.append([exp_system.get_reliability(lsw), lsw])
		lsw = exp_funcs.scaling_lsw(reliability_list)
Пример #12
0
from init import *

from scf import *

import sys
import numpy
if __name__ == "__main__":
    ao_ints, scf_params, e_ZZ_repul = init(sys.argv[1])
    eps, C, D, F = scf(ao_ints, scf_params, e_ZZ_repul)
    H = ao_ints['T'] + ao_ints['V']
    energy = get_SCF_energy(H, F, D, scf_params['unrestricted']) \
        + e_ZZ_repul
    print("\nFINAL SCF ENERGY: {}\n".format(energy))

    # mp2
    if(scf_params['method'] == "MP2"):
       import mp2
       print("SCS-MP2 Correlation Energy: {}\n".format(mp2.get_mp2_energy(\
           eps, C, ao_ints['g4'], scf_params['nel'])))
Пример #13
0
    for t in range(0, 2, 60):
        t = np.random.randint(imgCnt)
        t = 0
        imgName = PATH_A + "\\" + fn[t]
        imgNameSave = PATH_A + "\\m2_" + fn[t]
        print t, " ", imgName
        img = cv2.imread(imgName)

        # img=cv2.imread("xicore.jpg")
        # img=cv2.imread("Face_3.jpg")
        # img=cv2.imread("Face_29.jpg")

        # initialized shape
        # drawShape(img,meanShape,(255,0,0,255))

        initShape = init(img, face_cascade, left_eye_cascade, meanShape)
        # drawShape(img,initShape,COLOR[0])
        # cv2.imshow(imgNameSave,img)

        # targetShape=updateModelPoints(img,initShape,average_profile,sgVec,3)

        # drawShape(img,targetShape,(0,0,255,255))

        # targetShape=updateModelParas(img,meanShape,targetShape,pcaMatrix)
        targetShape = match(img, initShape, meanShape, average_profile, sgVec, pcaMatrix, 10)
        drawShape(img, targetShape, COLOR[2])

        # cv2.imshow(imgName,img)
        cv2.imshow(imgNameSave, img)
        cv2.imwrite(imgNameSave, img)
    cv2.waitKey(0)
Пример #14
0
def test_double_init():
    init()
    init()
    assert 1 == 1
    drop()
Пример #15
0
def test_double_drop():
    init()
    drop(with_models=True)
    drop(with_models=True)
    assert 1 == 1
Пример #16
0
#!/usr/bin/env python3
# Import modules
import boto3
import botocore
import argparse
import objectpath
import time
import pprint
import os
import csv
import re
from init import *
import collections
from collections import defaultdict
from aws_tag_resources import tag_instances, tag_root_volumes
from user_input import *
from banners import welcomebanner,endbanner,banner
from datetime import datetime
from colorama import init, deinit, Fore
from list_new_instances import list_new_instances
from read_account_info import read_account_info
from find_vpcs import find_vpcs
from aws_add_sg_list import attach_sg_list
from choose_accounts import choose_accounts

# Initialize the color ouput with colorama
init()
Пример #17
0
        print t, " ", imgName
        img = cv2.imread(imgName)
        (h, w, channel) = img.shape
        # img=cv2.imread("xicore.jpg")
        # img=cv2.imread("Face_3.jpg")
        # img=cv2.imread("Face_23.jpg")
        # img=cv2.imread("Face_9.jpg")
        #initialized shape
        # drawShape(img,meanShape,(255,0,0,255))
        (h, w, channel) = img.shape
        scaleIndex = 0
        scale = 1.0
        img = cv2.resize(img, (int(scale * w), int(scale * h)))
        # meanShape*=scale
        # pcaMatrix*=scale
        initShape = init(img, face_cascade, left_eye_cascade, meanShape)

        # targetShape=updateModelPoints(img,initShape,average_profile,sgVec,3)

        # drawShape(img,targetShape,(0,0,255,255))

        # targetShape=updateModelParas(img,meanShape,targetShape,pcaMatrix)
        targetShape, minProfileDist = match(img, initShape, meanShape,
                                            average_profile[0], sgVec[0],
                                            pcaMatrix, 15, scale)
        drawShape(img, targetShape, COLOR[2])
        cv2.namedWindow(imgNameSave, flags=cv.CV_WINDOW_AUTOSIZE)
        #cv2.imshow(imgName,img)
        cv2.imshow(imgNameSave, img)
        cv2.imwrite(imgNameSave, img)
    cv2.waitKey(0)
Пример #18
0
Energy = np.zeros(nt)
Magnetization = np.zeros(nt)
SpecificHeat = np.zeros(nt)
Susceptibility = np.zeros(nt)

T  = np.linspace(1, 3, nt)        #temperature

for m in range(len(T)):
    E1 = M1 = E2 = M2 = 0
    E1 = np.float64(E1)
    M1 = np.float64(M1)
    E2 = np.float64(E2)
    M2 = np.float64(M2)
    
    init(100,1)

## This is to equilibrate the system
    eqSteps = 2000
    config = initialstate(N)
    config_init = deepcopy(config)
    
    for i in range(eqSteps):
        mcmove(config, 1.0/T[m])

## This part does the main calculations and the measurements
    mcSteps = 2000
    for i in range(mcSteps):
        mcmove(config, 1.0/T[m])   # monte carlo moves
        Ene = calcEnergy(config)        # calculate the energy
        Mag = calcMag(config)           # calculate the magnetisation
Пример #19
0
def getSolution(config):
    A = init()
    U, nconf = mod2solver(A.copy(), config.copy())
    firstSolution = mod2result(U.copy(), nconf.copy())
    minimumSolution = minSolution(firstSolution)
    return minimumSolution
Пример #20
0
from PyQt5.QtWidgets import QHBoxLayout
from PyQt5.QtWidgets import QVBoxLayout
from PyQt5.QtGui import QPen
from PyQt5.QtGui import QPainter
from window_size import *
import pickle
import copy

window_width, window_height = get_window_size()

thumbnail_label_width = int(window_width * 9 / 10)
thumbnail_label_height = int(window_height * 1 / 8)

rect_width = int(window_width * 3 / 4)

id, dll = init()
all_point = []
tmp_point = []
all_mark_text = []
tmp_all_mark_text = []
tmp_all_point = []
tmp_mark_text = []
tmp_tmp_point = []
tmp_tmp_mark_text = []
ratio = 0
original_img_height = 0
original_img_width = 0
control_button_height = 64
control_button_width = 64
thumbnail_x = 0
all_start = 0
Пример #21
0
savefig = 0
vmin = 0
vmax = 0.6  #
#ncoeff=[1e-3,5e-3,1e-2,1.5e-2,2e-2,2.5e-2,3e-2]#5e-4
ncoeff = [1e-3]
E, disp1, Tens, matTens, triangles, vertices, fxy = openfile(filename)
N = len(E)
solmatf = np.zeros((N, len(ncoeff)))
pnoiselevel = np.zeros(len(ncoeff))
psnr = np.zeros(len(ncoeff))
for j, ymeas_noise_coef in enumerate(ncoeff):
    print('j is:', j)
    um, Ntlevel, SNR = addnoise(disp1, ymeas_noise_coef)
    pnoiselevel[j] = Ntlevel
    psnr[j] = SNR
    x1 = init(um, disp1, E, vertices, ymeas_noise_coef, Randinit, MA, scale)
    solmatf[:, j] = proxsolve(E, um, matTens, Tens, triangles, vertices, fxy,
                              ymeas_noise_coef, x1, vmin, vmax, filename,
                              Ntlevel, SNR, Itr1, Itr2, savefig, MA)  #
sio.savemat('one5E_sol_Itr1' + str(Itr1) + 'Itr2' + str(Itr2) + 'step03.mat', {
    'sol': solmatf,
    'pnl': pnoiselevel,
    'psnr': psnr
})

Data = loadmat('one5E_sol_img2bw0.12_MA0.mat')
solmat = Data['sol']
pnl = Data['pnl'][0]
psnr = Data['psnr'][0]
x = np.array(vertices[:, 0])
y = np.array(vertices[:, 1])
Пример #22
0
def optimize_with_size(outer, major, coil, halton, m_batches, m_error,
                       neutrons):

    gp, points, leak, leak_err = init(outer, major, coil, halton, m_batches,
                                      m_error, neutrons)

    print('GP model calculated')
    print('Optimizing...', multiprocessing.cpu_count(), 'cores.')

    if __name__ == "__main__":

        class my_problem():
            global outer
            global coil

            def fitness(self, x):

                leak, error = gp([(x[0], x[1])])
                ci1 = -(x[1] - x[0])

                return (leak[0], ci1)

            def get_nic(self):
                return 1

            def get_nobj(self):
                return 1

            def get_bounds(self):
                lb = [coil, coil]
                ub = [coil + outer - 0.01, coil + outer - 0.001]
                return (lb, ub)

        gen = 10
        size = 1000
        algo = algorithm(
            sga(gen=1, mutation='uniform', crossover='sbx', cr=0.50, m=0.10))
        prob = unconstrain(prob=my_problem(), method='death penalty')

        gp_leak = []

        pbar = tqdm(total=len(points))

        for k in range(len(points)):

            pop = population(prob, size)

            for i in range(gen):
                pop = algo.evolve(pop)

            leakage, leakage_error = shield(pop.champion_x, major, coil, False,
                                            outer, m_batches, m_error,
                                            neutrons)

            points[k] = pop.champion_x
            leak[k] = leakage
            leak_err[k] = leakage_error
            gp_leak.append(pop.champion_f[0])

            gp = GpRegressor(points, leak, leak_err)

            pbar.update(1)

    pbar.close()
    opt = leak.index(min(leak))
    shield(points[opt], major, coil, False, outer, m_batches, m_error,
           neutrons)
    print(bcolors.BOLD + '---------------')
    print('OPTIMIZATION FINISHED')
    print('BEST SOLUTION FOUND')
    print('////////////////////')
    print('R1:', points[opt][0], 'R2:', points[opt][1])
    print('Score (GP) %:', gp_leak[opt])
    print('Score (MC) %:', leak[opt])
    print('Score error (MC) %:', leak_err[opt])
    print('Relative error (MC) %:', leak_err[opt] / leak[opt] * 100)
    print('////////////////////' + bcolors.ENDC)
Пример #23
0
                Df[p, Nr - 1 - i,
                   j] = xray_transform(obj, ys[:, p], theta[Nr - 1 - i, j],
                                       phase)
    return Df


if __name__ == '__main__':

    # reference coordiante system
    i = np.array([1.0, 0.0, 0.0], dtype=TYPE)
    j = np.array([0.0, 1.0, 0.0], dtype=TYPE)
    k = np.array([0.0, 0.0, 1.0], dtype=TYPE)

    # geometry parameters: source trajectory and detector parameters
    conf = {}
    conf = init(conf)
    # object parameters
    obj = {}
    obj = init_obj(obj, plot=False)

    # geometry parameters: source trajectory
    R = conf['source_trajectory']['radius']
    P = conf['source_trajectory']['pitch']
    N = conf['source_trajectory']['number_turns']
    ds = conf['source_trajectory']['delta_s']
    D = conf['detector']['DSD']
    H = conf['detector']['height']
    Nr = conf['detector']['number_rows']
    Nc = conf['detector']['number_columns']
    delta_w = conf['detector']['pixel_height']  # detector element height
    arc_alpha = conf['detector']['pixel_width']  # detector element width (arc)
Пример #24
0
    print(args.cdns)

    return scripts, args.cdns, args.base, args.shuffle

def copy_file_to_file(from_handler, to_handler):
    # gets two handlers of files. copies contents of the first one to second
    for line in from_handler:
        print(line, file=to_handler, end='')
     

scripts, cdns, base, shuffle = get_args()
output_file_name = 'Tizex_analyze.js'
file_out = open(output_file_name, 'w')    # new file
# output_file = open(output_file_name, 'w')
init(file_out)  # this function creates a tmp file which beautified version of original code

for i in range(len(scripts)):
    script = scripts[i]
    if i in cdns:
        if type(script) == str:
            # when only js file is specified in args type of script is string
            f = open(script)
            for line in f:
                print(line, file=file_out)
        elif script.attrs.get('src'):
            # beautifulSoup obj. a script with src attribute.
            src = script.attrs.get('src').strip()
            if src.startswith('http') or (base and base.startswith('http')):
                if base and not src.startswith('http'):
                    src = os.path.join(base, src)
Пример #25
0
import pygame,sys
import mpc
from init import *
from pygame.locals import *
import PlayScreen

def init():
    pygame.init()
    pygame.font.init

    pygame.time.set_timer(pygame.USEREVENT, 500)


# -------------- Main -------------

init()
mpc = mpc.mpc()
playScreen = PlayScreen.PlayScreen(mpc)
screen = None
if FULLSCREEN==True:
    screen=pygame.display.set_mode(SCREEN_SIZE,pygame.FULLSCREEN,32)
else:
    screen=pygame.display.set_mode(SCREEN_SIZE,0,32)

while True:
    for event in pygame.event.get():
        if event.type == QUIT:
            pygame.quit()
            sys.exit()
        elif event.type == KEYDOWN:
            if event.key == K_q:
Пример #26
0
def game(name):
    global ground
    totalDir = 0

    init()
    ground = pygame.image.load("images/foreground1.png").convert_alpha()
    groundx = 0
    timerBuff = 0
    buffText = ""
    buffT = ""
    font = pygame.font.Font("fonts/vcr.ttf", 40)

    loadbackground(0)

    perso = Perso()
    all_sprite_list.add(perso)

    getSpritesVisible(all_sprite_visible, 0, all_sprite_list, perso)
    lvl = 0
    transition = 0
    score = 0
    ctrldir = 0
    ctrlnuage = 0
    dir = 0  #dir = 1 > droite dir = -1 > gauche
    vis = 0

    #BOUCLE INFINIE
    start_ticks = pygame.time.get_ticks()  #starter tick
    continuer = 1
    while continuer:

        # Limitation de vitesse de la boucle
        pygame.time.Clock().tick(fps)

        #pour gerer la colision
        oldpbottom = perso.hitb.rect.bottom
        oldpy = perso.hitb.rect.y

        #events
        for event in pygame.event.get():
            if event.type == QUIT:
                raise Exception("QUIT")

            if event.type == KEYDOWN:
                if event.key == K_RIGHT:
                    ctrldir = perso.vh
                elif event.key == K_LEFT:
                    ctrldir = -perso.vh
                if event.key == K_UP:
                    ctrlnuage = 1
                elif event.key == K_DOWN:
                    ctrlnuage = -1
                elif event.key == K_r:
                    init()
                elif event.key == K_ESCAPE:
                    raise Exception("BACK")

            if event.type == KEYUP:
                if event.key == K_RIGHT and ctrldir == perso.vh or event.key == K_LEFT and ctrldir == -perso.vh:
                    ctrldir = 0
                if event.key == K_UP and ctrlnuage == 1 or event.key == K_DOWN and ctrlnuage == -1:
                    ctrlnuage = 0
        dir = ctrldir

        perso.bondir(ctrlnuage)

        #update des pos du fond et des elems
        for i in range(len(fonds)):
            fondsx[i] = fondsx[i] - (dir * vitessebackground[i])
        groundx = groundx - dir
        score = max(score + dir, 0)
        totalDir = totalDir + dir
        for e in all_sprite_list:
            e.deplacer(dir)

        #collision platform
        corrdir = 0
        block_hit_list = pygame.sprite.spritecollide(perso.hitb,
                                                     platforms_list, False)
        for block in block_hit_list:
            if perso.hitb.rect.right <= block.rect.x + dir * 2:
                corrdir = (block.rect.x - perso.hitb.rect.right)
            elif perso.hitb.rect.x >= block.rect.right + dir * 2:
                corrdir = -(perso.hitb.rect.x - block.rect.right)
            elif oldpbottom <= block.rect.y:
                perso.v = -vitesse
                perso.rect.y = block.rect.y - 110
                #print(perso.rect.x)
                perso.hitb.updt(perso)
            elif oldpy >= block.rect.bottom:
                perso.v = -perso.v
                perso.rect.top = block.rect.bottom - 30
                perso.hitb.updt(perso)
            perso.changeimg()

        if len(block_hit_list) > 0:
            # update des pos du fond et des elems
            for i in range(len(fonds)):
                fondsx[i] = fondsx[i] - (corrdir * vitessebackground[i])
            groundx = groundx - corrdir
            score = score + corrdir
            totalDir = totalDir + corrdir
            for e in all_sprite_list:
                e.deplacer(corrdir)

        #collision buffs
        block_hit_list = pygame.sprite.spritecollide(perso.hitb,
                                                     blocksBuff_list, True)
        for block in block_hit_list:
            if block.typeBuff == "r" or block.typeBuff == "a" or block.typeBuff == "g":
                if perso.addBuff(block.typeBuff
                                 ) == 1:  #retourne vrai si le buff est activé
                    if block.typeBuff == "r" or block.typeBuff == "a" or block.typeBuff == "g":
                        if ctrldir > 0:
                            ctrldir = perso.vh
                        elif ctrldir < 0:
                            ctrldir = -perso.vh
            else:
                timerBuff = pygame.time.get_ticks()
                if block.typeBuff == "-":
                    score = score + malusPoints
                    buffT = str(malusPoints)
                elif block.typeBuff == "+":
                    score = score + bonusPoints
                    buffT = "+ " + str(bonusPoints)
                elif block.typeBuff == "++":
                    score = score + bonusPoints1
                    buffT = "+ " + str(bonusPoints1)
                elif block.typeBuff == "t":  #tp
                    transition = 600
        #affichage des fonds
        for i in range(len(fonds)):
            fondxi = fondsx[i]
            if fondxi <= -2 * width or fondxi >= 2 * width:
                fondxi = 0
                fondsx[i] = 0
            if fondxi < -width:
                fenetre.blit(fonds[i], ((fondxi) + (2 * width), 0))
            elif fondxi > 0:
                fenetre.blit(fonds[i], ((fondxi) - (2 * width), 0))
            fenetre.blit(fonds[i], (fondxi, 0))

        # affichage du sol
        if groundx <= -2 * width or groundx >= 2 * width:
            groundx = 0
        if groundx < -width:
            fenetre.blit(ground, (groundx + (2 * width), height - 148))
        elif groundx > 0:
            fenetre.blit(ground, (groundx - (2 * width), height - 148))
        fenetre.blit(ground, (groundx, height - 148))

        #pygame.draw.rect(fenetre, (153, 70, 0), pygame.Rect(0, height - 148, width, 148))

        #affichage des sprites

        all_sprite_visible.draw(fenetre)

        #verif et affichage du buff
        buffText = ""
        if perso.buff != "":
            duraBuff = 5 - (pygame.time.get_ticks() - perso.startBuff
                            ) / 1000  # calculate how many seconds
            if duraBuff < 0:  #on enleve le buff
                perso.deBuff()
                if ctrldir > 0:
                    ctrldir = perso.vh
                elif ctrldir < 0:
                    ctrldir = -perso.vh
            if perso.buff == "r":
                color = (0, 200, 0)
                buffText = font.render("SLOW", True, color)
            elif perso.buff == "g":
                color = (200, 200, 200)
                buffText = font.render("LEVITATION", True, color)
            else:
                color = (0, 0, 200)
                buffText = font.render("SPEED", True, color)
            buffHud = pygame.Rect(0, 0, duraBuff * 50, 20)
            buffHud.centerx = width / 2
            pygame.draw.rect(fenetre, color, buffHud)
            text_r = buffText.get_rect()
            text_r.centerx = width / 2  # align to right to 150px
            text_r.top = 25
            fenetre.blit(buffText, text_r)
        #affichage bonus
        if (2 - (pygame.time.get_ticks() - timerBuff) / 1000) > 0:
            textB = font.render(buffT, True, (255, 255, 255))
            textB_rect = textB.get_rect()
            textB_rect.right = width - 10  # align to right to 150px
            textB_rect.y = 50
            fenetre.blit(textB, textB_rect)

        #affichage du niveau
        text = font.render("FLOOR " + str(-lvl), True, (255, 255, 255))
        text_rect = text.get_rect()
        text_rect.centerx = width / 2  # align to right to 150px
        text_rect.y = height - 80
        fenetre.blit(text, text_rect)

        #affichege du score
        text = font.render(str(int(score)), True, (255, 255, 255))
        text_rect = text.get_rect()
        text_rect.right = width - 10  # align to right to 150px
        text_rect.y = 10
        fenetre.blit(text, text_rect)

        #affichage du timer
        seconds = 180 - (pygame.time.get_ticks() -
                         start_ticks) / 1000  # calculate how many seconds
        min = int(seconds / 60)
        seconds = int(seconds % 60)
        if seconds <= 0 and min == 0:
            saveNew(name, int(score))
            raise Exception("END")
        if seconds >= 10:
            seconds = str(seconds)
        else:
            seconds = "0" + str(seconds)
        text = font.render(str(min) + ":" + seconds, True, (255, 255, 255))
        fenetre.blit(text, (10, 10))

        #transition
        if transition > 0:
            while transition > -height - 148:
                #affichage du fond
                if transition == 0:
                    tp(int(block.dest))
                    totalDir = totalDir + block.dest
                    init()
                    for e in all_sprite_list:
                        e.deplacer(totalDir)
                else:
                    for i in range(len(fonds)):
                        fondxi = fondsx[i]
                        if fondxi <= -2 * width or fondxi >= 2 * width:
                            fondxi = 0
                            fondsx[i] = 0
                        if fondxi < -width:
                            fenetre.blit(fonds[i], ((fondxi) + (2 * width), 0))
                        elif fondxi > 0:
                            fenetre.blit(fonds[i], ((fondxi) - (2 * width), 0))
                        fenetre.blit(fonds[i], (fondxi, 0))
                #affichage du sol
                if transition > -height:

                    if groundx < -width:
                        fenetre.blit(ground,
                                     (groundx + (2 * width), transition))
                    elif groundx > 0:
                        fenetre.blit(ground,
                                     (groundx - (2 * width), transition))
                    fenetre.blit(ground, (groundx, transition))
                else:
                    if groundx < -width:
                        fenetre.blit(ground,
                                     (groundx +
                                      (2 * width), transition + 2 * height))
                    elif groundx > 0:
                        fenetre.blit(ground,
                                     (groundx -
                                      (2 * width), transition + 2 * height))
                    fenetre.blit(ground, (groundx, transition + 2 * height))
                pygame.display.flip()
                if transition == 0:
                    lvl = int(totalDir / 100000)
                    loadbackground(lvl)

                #all_sprite_visible.draw(fenetre)

                transition -= 60
                pygame.time.Clock().tick(fps)
                pygame.display.flip()
            getSpritesVisible(all_sprite_visible, score, all_sprite_list,
                              perso)

        pygame.display.flip()

        if dir != 0:
            getSpritesVisible(all_sprite_visible, score, all_sprite_list,
                              perso)
    return int(score)
Пример #27
0
def test_drop():
    init()
    drop(with_models=True)
    assert len(dm().all()) == cnt_base_decks
    assert len(ms().all()) == cnt_base_models
Пример #28
0
			jika test ==  Benar :
				vprint ( " SQLi vuln! -> "  + url, " cyan " , " info " )
			uji elif ==  " keluar " :
				istirahat
			lain :
				lulus

		cetak  " - "  *  20

def  main ():
	'' ' Fungsi utama ' ''

	if  len (sys.argv) ==  3  dan sys.argv [ 1 ] di [ ' -t ' , ' --target ' ]:
		url = sys.argv [ - 1 ]

		vprint ( " Situs web Target: "  +   url, " yellow " , " info " )
		
		rIp (url)
		merangkak()
		sC ()

	lain :
		pemakaian()

if  __name__  ==  " __main__ " :
	init ( autoreset = True )
	logo()
	vprint ( " Program dimulai " , " hijau " , " info " )
	utama()
	vprint ( " Program mematikan " , " kuning " , " info " )
Пример #29
0

# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - 1):
        a = dataset[i:(i + look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)


numpy.random.seed(7)

# load the dataset
df = init()
dataset = pandas.DataFrame(df, columns=['btc_market_price'])
dataset = dataset.values
dataset = dataset.astype('float32')

# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

# split into train and test sets, 80:20 split
train_size = int(len(dataset) * 0.80)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]

# reshape into X=t and Y=t+1
look_back = 3
Пример #30
0
'''
Using Multiple Linear Regression to predict the next day's closing values of Bitcoin's market price in USD.
'''

import pandas, sklearn, numpy
from sklearn import linear_model
from init import *

ipdata = init()


def correlation(dataset_arg, threshold, toprint=False):
    '''
    Return a copy of 'dataset_arg' without the columns that have correlation > threshold
    '''
    dataset = dataset_arg.copy(deep=True)
    col_corr = set()  # Set of all the names of deleted columns
    corr_matrix = dataset.corr()
    for i in range(len(corr_matrix.columns)):
        for j in range(i):
            if corr_matrix.iloc[i, j] >= threshold:
                colname = corr_matrix.columns[i]  # getting the name of column
                col_corr.add(colname)
                if colname in dataset.columns:
                    del dataset[
                        colname]  # deleting the column from the dataset

    if toprint:
        print(dataset)

    return dataset
Пример #31
0
def test_init():
    init()
    assert len(dm().all()) == cnt_base_decks + len(conf.decks)
    assert len(ms().all()) == cnt_base_models + len(conf.models)
    assert len(tg().all()) == len(conf.tags)
    drop()
Пример #32
0
from DLDA import *
from init import *
from numpy import matrix
training_file="../Data/Training_Data.txt"
training=matrix(init(training_file))
testing_file="../Data/Testing_Data.txt"
testing=matrix(init(testing_file))
total_gene=70
ex_range=3
ex_search=exhaustive_search(total_gene,ex_range)
minerror=1.0
for i in ex_search:
        parameters = DLDA_training(training[:,i],len(i)-2)
	mean0=parameters[0]
	mean1=parameters[1]
	cov0 = parameters[2]
	cov1=parameters[3]
	N0=parameters[4]
	N1=parameters[5]
	label = DLDA_testing(testing[:,i], mean0,mean1,cov0,cov1,N0,N1)
        error =0.0
        for j in range(0,len(testing)):
                if testing[j,-1]!=label[j]:
                        error =error+1
        error=float(error/len(testing))
        if error<minerror:
                minerror = error
                feture_selected = i 
print error
print feture_selected