def twss(sentence): x = processSentence(str(sentence), vocabList) old_stdout = sys.stdout sys.stdout = StringIO() p_label, p_acc, p_val = svm_predict([1], [x], model, '-b 1') sys.stdout = old_stdout return p_val[0][1]
def generateFeatures(filename, label, vocabList, X, y, Xtest, ytest): input = open(filename) sentences = pickle.load(input) input.close() # leave last 100 for test set top = len(sentences) - 100 for i in range(top): wi = processSentence(sentences[i], vocabList) X = X + [wi] y = y + [label] bottom = top top = len(sentences) for i in range(bottom, top): wi = processSentence(sentences[i], vocabList) Xtest = Xtest + [wi] ytest = ytest + [label] return X, y, Xtest, ytest
def generateFeatures(filename,label,vocabList,X,y,Xtest,ytest): input = open(filename); sentences = pickle.load(input) input.close() # leave last 100 for test set top = len(sentences)-100 for i in range(top): wi = processSentence(sentences[i],vocabList) X = X+[wi] y = y+[label] bottom = top top = len(sentences) for i in range(bottom,top): wi = processSentence(sentences[i],vocabList) Xtest = Xtest + [wi] ytest = ytest + [label] return X,y,Xtest,ytest
def twss(sentence,vocabList,model): #print "you said: '"+sentence+"'\n" # these should be moved to file responses = ['Whatever ...','Okay','Yawn','What makes you think I care?','Yada yada','Uhuh','Yeah, yeah','figures',"I'm hungry",'give me a break','so ...'] x = processSentence(sentence, vocabList) #print [x] p_label, p_acc, p_val = svm_predict([1], [x], model, '-b 1 -q') print p_label, p_acc, p_val if p_label[0] == 1: return "That's what she said!\n" else: return random.choice(responses) +'\n'
def twss(sentence, vocabList, model): #print "you said: '"+sentence+"'\n" # these should be moved to file responses = [ 'Whatever ...', 'Okay', 'Yawn', 'What makes you think I care?', 'Yada yada', 'Uhuh', 'Yeah, yeah', 'figures', "I'm hungry", 'give me a break', 'so ...' ] x = processSentence(sentence, vocabList) #print [x] p_label, p_acc, p_val = svm_predict([1], [x], model, '-b 1 -q') print p_label, p_acc, p_val if p_label[0] == 1: return "That's what she said!\n" else: return random.choice(responses) + '\n'
def twss_lite(sentence,vocabList,model): x = processSentence(sentence, vocabList) p_label, p_acc, p_val = svm_predict([1], [x], model, '-b 1 -q') return p_label[0]
def twss_lite(sentence, vocabList, model): x = processSentence(sentence, vocabList) p_label, p_acc, p_val = svm_predict([1], [x], model, '-b 1 -q') return p_label[0]
from processSentence import * sent_brok = processSentence("The magician got so mad he pulled his hare out") #print sent_brok """ def sentFeat(sent): # Preprocessing the sentence sent_brok = processSentence(sent) # Looking whether sentence have homonym or not for word in sent_brok: for homWord in homonym: if homWord[1] == word: # search(ngram, word) # how to get frequency # searching ngram frequency for a word def search(ngram_Corpus, searchFor): for key in ngram_Corpus: for value in ngram_Corpus[k]: if searchFor in value: return key return None """