from walnutclient import * #objWalnutClient= walnutclient(5001,'localhost',selProject.ModelMap.RawXML) strDataFolder = "/home/chandan/chandan/code/brainscience/" strRootFolder = "/home/chandan/chandan/code/brainscience/" strAppFolder = "curious/" strModelFolder = 'curiousWorkbench/test/models/' strModelFile = 'model1.txt' strDataFile ='Test_003_1_WordList.csv' inputModelFile = strRootFolder + strAppFolder + strModelFolder + strModelFile strInputDataFile = strDataFolder + strDataFile fo = open(inputModelFile,'r') strRawModelXML = fo.read() objwalnutclient = walnutclient(5001, 'localhost',strRawModelXML ) runValue = objwalnutclient.runNetworkWithFile(strInputDataFile, 'CSV',True,False,False,True) print runValue['returnValue']
def getWalnutResponse(self, trainValue): strRawModelXML = self.getModelFile() objWalnutClient= walnutclient(5001,'localhost',strRawModelXML) runValue = objWalnutClient.runNetworkWithValue(trainValue, False,False,False,True) return runValue
def trainProject(request, project_id): dataFileList = DataFile.objects.order_by('-LastUpdated') strMsg = "" selProject=get_object_or_404(Project, pk=project_id) objWalnutClient= walnutclient(5001,'localhost',selProject.ModelMap.RawXML) if 'trainForValue' in request.POST: trainValue=request.POST["txtTrain"] if trainValue.strip() !='': runValueList=None modelMap = selProject.ModelMap runValue = objWalnutClient.runNetworkWithValue(trainValue, False,False,False,True) predictionGraph = runValue["PredictionGraph"] #FormattedReturn=formatPrediction(0, returnValue) template = loader.get_template('curiousWorkbench/trainProject.html') predictionGraphImagePath = drawPredictionGraph(predictionGraph) context = RequestContext(request, { 'project' : selProject, 'modelMap': modelMap, 'runValue':runValue["returnValue"], 'strMsg':runValue["strMsg"], 'predictionGraphImagePath':predictionGraphImagePath, 'dataFileList': dataFileList, }) else: modelMap = selProject.ModelMap template = loader.get_template('curiousWorkbench/trainProject.html') context = RequestContext(request, { 'project' : selProject, 'modelMap': modelMap, 'runValue':'', 'strMsg':'', 'predictionGraphImagePath':'', 'dataFileList': dataFileList, }) elif 'trainWithFile' in request.POST: if request.POST["rdoDataFile"] != "0": trainValueFile=request.POST["rdoDataFile"] runValue = objWalnutClient.runNetworkWithFile(trainValueFile,'CSV',True,False,False,True) else: runValue = {"returnValue":"No File Selected","strMsg":""} selProject=get_object_or_404(Project, pk=project_id) modelMap = selProject.ModelMap template = loader.get_template('curiousWorkbench/trainProject.html') context = RequestContext(request, { 'project' : selProject, 'modelMap': modelMap, 'runValue':runValue['returnValue'], 'strMsg':runValue['strMsg'], 'dataFileList': dataFileList }) elif 'resetProject' in request.POST: returnV = objWalnutClient.resetTraining() #objNetwork = Network() #objNetwork.resetTraining(project_id) selProject=get_object_or_404(Project, pk=project_id) modelMap = selProject.ModelMap template = loader.get_template('curiousWorkbench/trainProject.html') context = RequestContext(request, { 'project' : selProject, 'modelMap': modelMap, 'runValue':"--", 'strMsg':"", 'dataFileList': dataFileList }) else: selProject=get_object_or_404(Project, pk=project_id) modelMap = selProject.ModelMap template = loader.get_template('curiousWorkbench/trainProject.html') context = RequestContext(request, { 'project' : selProject, 'modelMap': modelMap, 'runValue':"--", 'strMsg':"", 'dataFileList': dataFileList, }) return HttpResponse(template.render(context))