Пример #1
0
def runTraining(folderName):
    trainingFiles = []  #Liste des fichiers d'entrainement
    trainingData = []  #données étudiées
    pos = 0
    neg = 0

    for dir in os.walk(folderName):
        dir = dir[1]  #get directory list
        for i, f in enumerate(dir):
            actualFolder = os.path.join(folderName, f)
            for files in os.walk(
                    actualFolder):  #Parcourir liste dossier dans training
                trainingFiles.append(files[2])
                for j, tf in enumerate(
                        files[2]):  #Parcourir liste des fichiers dans *star
                    tempP, tempN = (an.analyzeFile(
                        os.path.join(actualFolder, tf)))
                    pos = (pos + tempP) / 2
                    neg = (neg + tempN) / 2
                trainingData.append([pos, neg])
    return trainingData
Пример #2
0
                           help="Folder with training examples")
    argparser.add_argument("-f", "--fileName", help="File to analyze")
    args = argparser.parse_args()

    print("Analyzing training files... Please wait ... ")
    data = td.runTraining(args.directoryName)  #Analyse des fichiers de test

    if args.fileName:
        print(
            "You chose to analyze a new file to determine how many stars it should have."
        )
        print("Analyzing " + str(args.fileName) + ". Please wait...")
        filename = os.path.join(
            "tests", args.fileName
        )  #le fichier que l'on veut analyser doit se trouver dans le dossier "tests"
        pos, neg = an.analyzeFile(filename)  #Analyse du fichier

        print("RESULTS :")
        if (max(pos, neg) == pos):
            print("This review is more positive than negative")
        else:
            print("This review is more negative than positive")

        # METHODE 1 - Non Concluante (Précision à ~0,6 étoiles)
        # res=an.getBestMatch1(data,pos,neg)
        # print("Method 1 : This review should have "+str(res)+" star(s)")

        #METHODE 2 - MEILLEURE (Précision à ~0,5 étoiles)
        res = an.getBestMatch2(data, pos, neg)
        print("This review should have " + str(res) + " star(s)")
        # print("Method 2 : This review should have "+str(res)+" star(s)")