Пример #1
0
def generate_lean_samples():
    """
    generate lean shelf pose samples from frontal shelf pose images
    :return:
    """
    p = Augmentor.Pipeline(args['img_dir'])
    # p.rotate(probability=1, max_left_rotation=25, max_right_rotation=25)
    p.skew_left_right(probability=1, magnitude=random.randint(7, 10) / 10)
    # p.skew_top_bottom(probability=1, magnitude=random.randint(6, 10) / 10)
    # p.random_contrast(0.5, min_factor=0.5, max_factor=1.05)
    # p.random_distortion(probability=0.2, grid_width=2, grid_height=2, magnitude=2)

    # p.sample(args['sample_num'])
    p.process()
Пример #2
0
def augment(sourcePath,labelPath,outputPath,size):
	p = Augmentor.Pipeline(
		source_directory=sourcePath
		,output_directory=outputPath
	)
	p.ground_truth(labelPath)
	p.rotate(probability=0.2, max_left_rotation=2, max_right_rotation=2)
	p.zoom(probability=0.2, min_factor=1.1, max_factor=1.2)
	p.skew(probability=0.2)
	p.random_distortion(probability=0.2, grid_width=100, grid_height=100, magnitude=1)
	p.shear(probability=0.2, max_shear_left=2, max_shear_right=2)
	p.crop_random(probability=0.2, percentage_area=0.8)
	p.flip_random(probability=0.2)
	p.sample(n=size)
Пример #3
0
def aug(path):
    p = Augmentor.Pipeline(path)
    #p.rotate(probability=0.5,max_left_rotation=25,max_right_rotation=10)
    #p.skew_tilt(probability=0.1,magnitude=1)
    #p.skew_corner(probability=0.01,magnitude=1)
    #p.random_distortion(probability=0.01,grid_height=5,grid_width=16,magnitude=8)
    p.shear(probability=0.01, max_shear_left=15, max_shear_right=15)
    #p.random_erasing(probability=0.3,rectangle_area=0.5)
    p.zoom(probability=0.5, min_factor=1, max_factor=1.5)
    p.random_brightness(probability=0.2, min_factor=0.7, max_factor=1.2)
    p.random_color(probability=0.2, min_factor=0.7, max_factor=1.2)
    p.random_contrast(probability=0.2, min_factor=0.7, max_factor=1.2)
    p.greyscale(probability=0.4)
    p.sample(11700)
Пример #4
0
    def _get_pipeline(self, path=None):

        p = Augmentor.Pipeline(path)

        p.crop_random(probability=0.5, percentage_area=0.7)
        # p.resize(probability=1.0, width=512, height=512)
        p.flip_left_right(probability=0.5)
        p.rotate(probability=0.5, max_left_rotation=10, max_right_rotation=10)
        p.shear(probability=0.4, max_shear_left=10, max_shear_right=10)
        # p.random_distortion(probability=0.3, grid_height=5, grid_width=5, magnitude=2)
        p.skew(probability=0.5)


        return p
Пример #5
0
def pro_extend_earsing(imgpath):
    imgpiple = p.Pipeline(imgpath)
    # print(imgpath)
    imgpiple.rotate(probability=0.7,
                    max_left_rotation=10,
                    max_right_rotation=10)
    imgpiple.zoom(probability=0.5, min_factor=1.1, max_factor=1.5)
    imgpiple.random_erasing(probability=1, rectangle_area=0.5)
    # imgpiple.crop_random(probability=0.2, percentage_area=0.5)
    # img = cv2.imread(imgpath)
    # imgHir = cv2.flip(img,1,dst = None)
    imgpiple.sample(10)
    # imgpiple.process()
    return 0
Пример #6
0
def test_scale_ground_truth():

    standard_image_directory, ground_truth_image_directory = create_temporary_data(
    )

    num_samples = 10

    p = Augmentor.Pipeline(standard_image_directory)
    p.ground_truth(ground_truth_image_directory)

    p.scale(probability=1, scale_factor=1.4)

    p.sample(num_samples)

    generated_files = glob.glob(
        os.path.join(standard_image_directory, "output/*"))
    assert (num_samples * 2) == len(generated_files)

    destroy_temporary_data(standard_image_directory,
                           ground_truth_image_directory)

    # Do the same for single image lists
    standard_image_directory, ground_truth_image_directory = create_temporary_data(
    )

    num_samples = 10

    p = Augmentor.Pipeline(standard_image_directory)
    p.scale(probability=1, scale_factor=1.4)
    p.sample(num_samples)

    generated_files = glob.glob(
        os.path.join(standard_image_directory, "output/*"))
    assert num_samples == len(generated_files)

    destroy_temporary_data(standard_image_directory,
                           ground_truth_image_directory)
Пример #7
0
def test_crop_random_ground_truth():

    standard_image_directory, ground_truth_image_directory = create_temporary_data(
    )

    num_samples = 10

    p = Augmentor.Pipeline(standard_image_directory)
    p.ground_truth(ground_truth_image_directory)

    p.add_operation(CropRandom(probability=1, percentage_area=0.5))

    p.sample(num_samples)

    generated_files = glob.glob(
        os.path.join(standard_image_directory, "output/*"))
    assert (num_samples * 2) == len(generated_files)

    destroy_temporary_data(standard_image_directory,
                           ground_truth_image_directory)

    # Do the same for single images
    standard_image_directory, ground_truth_image_directory = create_temporary_data(
    )

    num_samples = 10

    p = Augmentor.Pipeline(standard_image_directory)
    p.add_operation(CropRandom(probability=1, percentage_area=0.5))
    p.sample(num_samples)

    generated_files = glob.glob(
        os.path.join(standard_image_directory, "output/*"))
    assert num_samples == len(generated_files)

    destroy_temporary_data(standard_image_directory,
                           ground_truth_image_directory)
Пример #8
0
def augment_fn(dir_str):
    p = Augmentor.Pipeline(dir_str)
    #p.random_brightness(probability = 0.5, min_factor = 0.6, max_factor = 1.0)
    #p.random_color(probability =0.5, min_factor = 0.2, max_factor = 0.8)
    #p.random_contrast(probability =0.5, min_factor = 0.5, max_factor = 0.8)
    p.skew(probability=0.4, magnitude=0.2)
    p.shear(probability=0.3, max_shear_left=5, max_shear_right=5)
    p.rotate(probability=0.5, max_left_rotation=15, max_right_rotation=15)
    p.rotate90(probability=0.5)
    p.rotate180(probability=0.5)
    p.rotate270(probability=0.5)
    #p.random_distortion(probability = 0.2,
    #grid_height = 10, grid_width =10, magnitude= 2)
    p.zoom(probability=0.2, min_factor=1.1, max_factor=1.15)
    p.sample(1000)
Пример #9
0
def data_augment(path_to_images_dir, data_aug_samples):
    """
    data augmentation
    :param path_to_images_dir:
    :param data_aug_samples:
    :return:
    """
    p = Augmentor.Pipeline(path_to_images_dir)
    p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10)
    p.zoom(probability=1, min_factor=1.1, max_factor=1.5)
    p.flip_left_right(probability=0.5)
    p.flip_top_bottom(probability=0.5)
    p.rotate90(0.5)
    p.rotate270(0.5)
    p.sample(data_aug_samples)
Пример #10
0
def aug_distortion(img_path, gen_num):
    '''
    图像扭曲
    :param img_path:
    :param gen_num: 生成扭曲图像的数量
    :return:
    '''
    p = Augmentor.Pipeline(img_path)
    p.random_distortion(probability=1,
                        grid_width=8,
                        grid_height=8,
                        magnitude=8)
    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
    p.zoom_random(probability=0.5, percentage_area=0.9)
    p.sample(gen_num)
Пример #11
0
def test_torch_transform():
    torchvision = pytest.importorskip("torchvision")

    red = np.zeros([10, 10, 3], np.uint8)
    red[..., 0] = 255
    red = Image.fromarray(red)

    g = Augmentor.Operations.Greyscale(1)

    p = Augmentor.Pipeline()
    p.greyscale(1)
    transforms = torchvision.transforms.Compose([p.torch_transform()])

    assert red != transforms(red)
    assert g.perform_operation(red) == transforms(red)
Пример #12
0
def augmentor(dir, out_dir):
    p = Augmentor.Pipeline(dir, output_directory=out_dir)
    p.rotate(probability=0.5, max_left_rotation=20, max_right_rotation=10)
    p.zoom(probability=0.2, min_factor=1.0, max_factor=1.2)
    p.random_distortion(probability=0.1,
                        grid_width=4,
                        grid_height=4,
                        magnitude=8)
    p.flip_left_right(probability=0.5)
    #p.flip_top_bottom(probability=0.5)#
    #p.crop_random(probability=0.5, percentage_area=0.9)
    p.shear(probability=0.5, max_shear_left=10, max_shear_right=10)
    p.skew(probability=0.5, magnitude=1)
    p.resize(probability=1, width=224, height=224)
    p.sample(500)
Пример #13
0
def get_distortion_pipline(path, num):
    """
    之前采用 增广策略:随机扭曲
    :param path:
    :param num:
    :return:
    """
    p = Augmentor.Pipeline(path)
    p.zoom(probability=0.5, min_factor=1.05, max_factor=1.05)
    p.random_distortion(probability=1,
                        grid_width=6,
                        grid_height=2,
                        magnitude=3)
    p.sample(num)
    return p
def augment(ims_root, max_sample, size=(112, 112)):
    list_dir = os.listdir(ims_root)
    for dir_n in list_dir:
        data_dir = os.path.join(ims_root, dir_n)
        list_im = os.listdir(data_dir)
        p = Augmentor.Pipeline(data_dir)
        if max_sample // 3 < len(list_im) < max_sample:
            p.flip_left_right(probability=0.75)
        elif len(list_im) < max_sample // 3:
            p.flip_left_right(probability=0.3)
            p.shear(probability=0.5, max_shear_left=20, max_shear_right=20)
            p.rotate(probability=0.5, max_left_rotation=20, max_right_rotation=20)
        else:
            p.resize(probability=1.0, width=size[0], height=size[1])
        p.sample(max_sample)
Пример #15
0
def genrate_images(source, output, number):
    p = Augmentor.Pipeline(source, output_directory=output)
    p.flip_random(probability=1)
    p.flip_left_right(probability= 1.0)
    p.flip_top_bottom(probability= 1.0)
    p.crop_random(probability=1.0, percentage_area=0.90)
    p.rotate_random_90(probability=0.9)
    p.rotate180(probability=0.8)
    p.rotate270(probability=0.6)
    p.flip_random(probability=1)
    p.rotate(probability=0.5, max_left_rotation=4, max_right_rotation=4)
    p.shear(probability=0.6, max_shear_left=8, max_shear_right=8 )
    p.zoom(probability=0.8, min_factor=1, max_factor=1.3)
    p.sample(number)
    shutil.rmtree(output+"/0")
Пример #16
0
def augment(input_path, n):
    """
    Apply a set of augmentation operations
    """
    p = Augmentor.Pipeline(input_path)
    # Point to a directory containing ground truth data.
    # Images with the same file names will be added as ground truth data
    # and augmented in parallel to the original data.
    #p.ground_truth("/path/to/ground_truth_images")
    # Add operations to the pipeline as normal:
    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
    p.flip_left_right(probability=0.5)
    p.zoom_random(probability=0.5, percentage_area=0.8)
    p.flip_top_bottom(probability=0.5)
    p.sample(n)
Пример #17
0
def test_keras_generator_from_disk():

    batch_size = random.randint(1, 50)
    width = 80
    height = 80

    tmpdir = tempfile.mkdtemp()
    tmps = create_multiple_images(tmpdir, 10, (width, height))

    p = Augmentor.Pipeline(tmpdir)
    assert len(p.augmentor_images) == len(tmps)

    p.rotate(probability=0.5, max_left_rotation=5, max_right_rotation=5)
    p.flip_left_right(probability=0.333)
    p.flip_top_bottom(probability=0.5)

    g = p.keras_generator(batch_size=batch_size,
                          image_data_format="channels_last")

    X, y = next(g)

    assert len(X) == batch_size
    assert len(X) == batch_size
    assert len(X) == len(y)

    assert np.shape(X) == (batch_size, width, height, 3)

    # Call next() more than the total number of images in the pipeline
    for i in range(20):
        X, y = next(g)
        assert len(X) == batch_size
        assert len(X) == batch_size
        assert len(X) == len(y)
        assert np.shape(X) == (batch_size, width, height, 3)

    g2 = p.keras_generator(batch_size=batch_size,
                           image_data_format="channels_first")

    X2, y2 = next(g2)

    assert len(X2) == batch_size
    assert len(X2) == len(y2)

    assert np.shape(X2) == (batch_size, 3, width, height)

    # Finally remove the directory (and everything in it) as mkdtemp does
    # not delete itself after closing automatically
    shutil.rmtree(tmpdir)
Пример #18
0
    def __init__(self, img_size=256):
        super(VHFlipRotateCrop, self).__init__(img_size)

        self.solt_pipeline = solt.Stream([
            slt.Flip(p=self.probablity, axis=0),
            slt.Flip(p=self.probablity, axis=1),
            slt.Rotate(angle_range=(0, 20)),
            slt.Crop(224, crop_mode="r"),
        ])

        self.albumentations_pipeline = albu.Compose([
            albu.VerticalFlip(p=self.probablity),
            albu.HorizontalFlip(p=self.probablity),
            albu.Rotate(limit=(0, 20),
                        p=self.probablity,
                        border_mode=cv2.BORDER_CONSTANT,
                        value=0),
            albu.RandomCrop(height=224, width=224),
            ToTensor(normalize={
                "mean": [0.485, 0.456, 0.406],
                "std": [0.229, 0.224, 0.225]
            }),
        ])

        self.torchvision_pipeline = tv_transforms.Compose([
            tv_transforms.RandomHorizontalFlip(p=self.probablity),
            tv_transforms.RandomRotation(degrees=(0, 20)),
            tv_transforms.RandomCrop(224),
            tv_transforms.ToTensor(),
            tv_transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225]),
        ])

        _augm_ppl = augmentor.Pipeline()
        _augm_ppl.flip_top_bottom(probability=self.probablity)
        _augm_ppl.flip_left_right(probability=self.probablity)
        _augm_ppl.rotate(probability=self.probablity,
                         max_left_rotation=0,
                         max_right_rotation=20)
        _augm_ppl.crop_random(probability=1,
                              percentage_area=224 / float(self.img_size))

        self.augmentor_pipeline = tv_transforms.Compose([
            _augm_ppl.torch_transform(),
            tv_transforms.transforms.ToTensor(),
            tv_transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225]),
        ])
Пример #19
0
    def __init__(self,
                 path,
                 distortion=False,
                 flip_horizontal=False,
                 flip_vertical=False,
                 random_crop=False,
                 random_erasing=False,
                 rotate=False,
                 resize=False,
                 skew=False,
                 shear=False,
                 brightness=False,
                 contrast=False,
                 color=False,
                 target_width=299,
                 target_height=299):
        self.path = path
        self.categories = sorted(os.listdir(self.path))
        self.categories_folder = [
            os.path.abspath(os.path.join(self.path, i))
            for i in self.categories
        ]
        # options
        self.distortion = distortion
        self.flip_horizontal = flip_horizontal
        self.flip_vertical = flip_vertical
        self.random_crop = random_crop
        self.random_erasing = random_erasing
        self.rotate = rotate
        self.resize = resize
        self.skew = skew
        self.shear = shear
        self.brightness = brightness
        self.contrast = contrast
        self.color = color
        self.target_width = target_width
        self.target_height = target_height
        # Create a pipeline for each class
        self.pipelines = {}
        for folder in self.categories_folder:
            print("Folder %s:" % folder)
            self.pipelines[os.path.split(folder)[1]] = (
                Augmentor.Pipeline(folder))
            print("\n----------------------------\n")

        for p in self.pipelines.values():
            print("Class %s has %s samples." %
                  (p.augmentor_images[0].class_label, len(p.augmentor_images)))
Пример #20
0
def img_distortion(img_path):
    for file in os.listdir(img_path):
        if file == '.DS_Store':
            os.remove(img_path + '/' + file)
        else:
            pass
    p = Augmentor.Pipeline(img_path)
    p.rotate(probability=0.5, max_left_rotation=5, max_right_rotation=5)
    # p.zoom(probability=0.1, min_factor=0.5, max_factor=1.0)
    p.random_distortion(probability=1,
                        grid_width=2,
                        grid_height=2,
                        magnitude=2)
    # p.flip_left_right(probability=0.2)
    # p.flip_top_bottom(probability=0.2)
    p.sample(2000)
def augmentate_data_from_path():
    copy_covid_dataset()

    input_path = Paths.DATASET_BASE_PATH + 'data/augmented-orig/'
    output_path = Paths.DATASET_BASE_PATH + 'data/augmented/'

    p = Augmentor.Pipeline(
        source_directory=input_path,
        output_directory=output_path)
    p.rotate(probability=1, max_left_rotation=0.15, max_right_rotation=0.15)
    p.flip_left_right(probability=0.5)
    p.zoom_random(probability=0.2, percentage_area=0.8)
    p.status()

    p.sample(1000)
    p.process()
Пример #22
0
def get_Augmentor(path,batch_size,rotate=True,color=True,flip_ud=True):
    p = Augmentor.Pipeline(path, output_directory="/tmp/")
    p.skew_tilt(probability=0.5, magnitude=0.5)
    p.random_distortion(probability=0.5, grid_width=4, grid_height=4, magnitude=2)
    if rotate:
        p.rotate90(probability=0.3)
        p.rotate270(probability=0.3)
        p.rotate(probability=0.3, max_left_rotation=10, max_right_rotation=10)
    if flip_ud:
        p.flip_top_bottom(probability=0.3)
    p.flip_left_right(probability=0.3)

    if not color:
        p.greyscale(probability=1.0)
    g=p.keras_generator(batch_size=batch_size)
    return g
Пример #23
0
def augment_folder(path, generated_count=50, pixels_mean=None):
    # temporary margin to make sure the object won't oversize during deformation
    temp_margin = 2.0
    # margin after operations = final_margin * size
    final_margin = 0.05
    # temporary increases size to make erosion softer
    erosion_scaling = 4

    # detect images
    p = Augmentor.Pipeline(path, output_directory="augment")
    # get dimension of first image
    im_width = 100
    im_height = 100
    if len(p.augmentor_images) > 0:
        first_path = p.augmentor_images[0].image_path
        im = Image.open(first_path)
        im_width = im.width
        im_height = im.height

    p.random_distortion(1, 2, 2, 8)
    p.add_operation(
        AutoresizeImage(probability=1,
                        max_horizontal_loss=0.4,
                        max_vertical_loss=0.2))
    p.add_operation(
        ExpandImage(probability=1,
                    width=int(temp_margin * im_width),
                    height=int(temp_margin * im_height)))
    p.rotate(probability=1, max_left_rotation=7, max_right_rotation=7)
    p.skew(1, 0.2)
    # p.shear(1, 5, 5)
    p.add_operation(AutoCropImage(probability=1, margin=final_margin))
    p.resize(1, int(erosion_scaling * im_width),
             int(erosion_scaling * im_height))
    p.add_operation(SmoothImage(probability=1, blur=2, threshold=128))
    pixels_mean_scaled = None

    if pixels_mean is not None:
        pixels_mean_scaled = pixels_mean * erosion_scaling * erosion_scaling * 255  # max of pickle data pixel = 1

    p.add_operation(
        ErosImage(probability=1,
                  max_erosion=3,
                  max_dilation=4,
                  pixels_mean=pixels_mean_scaled))
    p.resize(1, int(im_width), int(im_height))
    p.sample(generated_count)
Пример #24
0
    def __getitem__(self, index):
        rng = random
        image1 = rng.choice(self.dataset.imgs)

        # get image from same class
        label = None
        if index % 2 == 1:
            label = 1.0
            while True:
                image2 = rng.choice(self.dataset.imgs)
                if image1[1] == image2[1]:
                    break
        # get image from different class
        else:
            label = 0.0
            while True:
                image2 = rng.choice(self.dataset.imgs)
                if image1[1] != image2[1]:
                    break
        image1 = Image.open(image1[0])
        image2 = Image.open(image2[0])
        image1 = image1.convert('L')
        image2 = image2.convert('L')

        # apply transformation on the fly
        if self.augment:
            p = Augmentor.Pipeline()
            p.rotate(probability=0.5,
                     max_left_rotation=15,
                     max_right_rotation=15)
            p.random_distortion(
                probability=0.5,
                grid_width=6,
                grid_height=6,
                magnitude=10,
            )
            trans = transforms.Compose([
                p.torch_transform(),
                transforms.ToTensor(),
            ])
        else:
            trans = transforms.ToTensor()

        image1 = trans(image1)
        image2 = transforms.ToTensor()(image2)
        y = torch.from_numpy(np.array([label], dtype=np.float32))
        return (image1, image2, y)
Пример #25
0
def trainingset_augmentation(data_path,
                             output_width,
                             output_height,
                             samples=100,
                             ground_truth_path=None,
                             output_dir='output',
                             ground_truth_output_dir=None):
    import os
    import Augmentor
    # create pipeline
    p = Augmentor.Pipeline(data_path, output_dir)
    if ground_truth_path: p.ground_truth(ground_truth_path)

    # add color operation
    # p.random_contrast(probability=1, min_factor=1, max_factor=1)
    # p.random_brightness(probability=1, min_factor=1, max_factor=1)
    # p.random_color(probability=1, min_factor=1, max_factor=1)

    # add shape operation
    p.rotate(probability=1, max_left_rotation=25, max_right_rotation=25)
    p.crop_random(probability=1,
                  percentage_area=0.5,
                  randomise_percentage_area=False)
    p.random_distortion(probability=0.8,
                        grid_width=30,
                        grid_height=30,
                        magnitude=1)
    p.skew(probability=0.5)
    p.shear(probability=0.4, max_shear_left=5, max_shear_right=5)
    p.resize(probability=1, width=output_width, height=output_height)

    # generate
    p.sample(samples)

    # move ground truth to other folder
    if ground_truth_output_dir is not None:
        import shutil
        from dataset import get_all_file
        if not os.path.exists(ground_truth_output_dir):
            os.mkdir(ground_truth_output_dir)
        # read all images path
        imgs_path = get_all_file(output_dir)
        num = np.int32(len(imgs_path) / 2)
        # move gt
        gt_paths = imgs_path[num:]
        for path in gt_paths:
            shutil.move(path, ground_truth_output_dir)
def getdata(train_path, val_path, test_path):
    # create a data generator

    image_size = config.IMAGE_SIZE

    datagen_batch_size = config.batch_size

    p = Augmentor.Pipeline()
    p.flip_left_right(probability=0.5)
    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
    p.zoom_random(probability=0.5, percentage_area=0.95)
    p.random_distortion(probability=0.5,
                        grid_width=2,
                        grid_height=2,
                        magnitude=8)
    p.random_color(probability=1, min_factor=0.8, max_factor=1.2)
    p.random_contrast(probability=1, min_factor=0.8, max_factor=1.2)
    p.random_brightness(probability=1, min_factor=0.8, max_factor=1.2)
    p.random_erasing(probability=0.5, rectangle_area=0.2)

    data_generator = ImageDataGenerator(
        preprocessing_function=p.keras_preprocess_func())

    # test data shouldn't be augmented

    test_datagen = ImageDataGenerator()

    train_it = data_generator.flow_from_directory(
        train_path,
        class_mode='categorical',
        batch_size=datagen_batch_size,
        target_size=(image_size, image_size))

    # load and iterate validation dataset
    val_it = data_generator.flow_from_directory(val_path,
                                                class_mode='categorical',
                                                batch_size=datagen_batch_size,
                                                target_size=(image_size,
                                                             image_size))
    # load and iterate test dataset
    test_it = test_datagen.flow_from_directory(test_path,
                                               class_mode='categorical',
                                               batch_size=datagen_batch_size,
                                               target_size=(image_size,
                                                            image_size))

    return train_it, val_it, test_it
Пример #27
0
def augmentation_new_image(input_dir, output_dir, output_number):
    import Augmentor        # pip install Augmentor -i https://pypi.tuna.tsinghua.edu.cn/simple

    p = Augmentor.Pipeline(input_dir, output_directory = output_dir)

    p.zoom(probability=0.1, min_factor=1.1, max_factor=1.3)
    p.flip_left_right(probability=0.1)
    p.rotate(probability=0.2, max_left_rotation=15, max_right_rotation=16)
    p.shear(probability=0.2, max_shear_left=10, max_shear_right=10)
    p.skew(probability=0.1, magnitude=0.6)
    p.skew_tilt(probability=0.2, magnitude=0.6)
    p.random_distortion(probability=0.3, grid_height=4, grid_width=4, magnitude=4)

    # p.random_distortion(probability=0.2, grid_height=4, grid_width=4, magnitude=4)
    # p.rotate90(probability=1)

    p.sample(output_number)
Пример #28
0
def pics_aug(save_img_dir):
    # 确定原始图像存储路径以及掩码文件存储路径
    p = Augmentor.Pipeline(save_img_dir)
    p.ground_truth(aug_testlabels)

    # 图像旋转: 按照概率0.8执行,最大左旋角度10,最大右旋角度10
    p.rotate(probability=0.4, max_left_rotation=1, max_right_rotation=1)

    # 图像左右互换: 按照概率0.5执行
    p.flip_left_right(probability=0.5)
    '''
    # 图像放大缩小: 按照概率0.8执行,面积为原始图0.85倍
    p.zoom_random(probability=0.3, percentage_area=0.9)
    '''
    # 最终扩充的数据样本数
    p.sample(100)
    '''
Пример #29
0
def augment(imgdir, sample_n):
    p = Augmentor.Pipeline(imgdir)

    # 加入变换操作和概率
    # 旋转 & 放大 & 镜像
    p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10)
    p.zoom(probability=0.5, min_factor=1.1, max_factor=1.5)
    p.flip_left_right(probability=0.5)
    p.random_brightness(0.8, 0.8, 1.2)
    p.scale(0.4, 1.2)
    p.black_and_white(0.1)
    p.greyscale(0.5)
    p.random_erasing(0.9, 0.5)
    # p.random_distortion(0.3, 30, 30, 5)
    # p.skew(0.1)
    # 生成数据在 imgdir/output/ 下
    p.sample(sample_n)
Пример #30
0
def generate_samples(src, dst, num_samples, seed):
    p = Augmentor.Pipeline(source_directory=src, output_directory=dst)

    p.set_seed(seed=seed)
    p.rotate(probability=0.5, max_left_rotation=5, max_right_rotation=5)
    # p.zoom(probability=0.5, min_factor=1.0, max_factor=1.2)
    # p.crop_random(probability=0.1, percentage_area=0.9)
    p.random_distortion(probability=0.5,
                        grid_height=10,
                        grid_width=10,
                        magnitude=2)
    p.skew_left_right(probability=0.5, magnitude=0.1)
    p.skew_top_bottom(probability=0.5, magnitude=0.1)
    p.resize(probability=1.0, width=512, height=512)
    p.sample(num_samples)

    del p