Пример #1
0
def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    learning_rate = tf.placeholder(tf.float32, name="learning_rate")
    image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 7], name="input_image")
    annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")

    pred_annotation_value, pred_annotation, logits = inference(image, keep_probability)
    #logits:the last layer of conv net
    #labels:the ground truth
    
    at = float(cfgs.at)
    a_w = (1- 2*at) * tf.cast(tf.squeeze(annotation, squeeze_dims=[3]), tf.float32) + at
    

    pro = tf.nn.softmax(logits)
     
    loss_weight = tf.pow(1-tf.reduce_sum(pro * tf.one_hot(tf.squeeze(annotation, squeeze_dims=[3]), cfgs.NUM_OF_CLASSESS), 3), cfgs.gamma)
     
    
    loss = tf.reduce_mean(loss_weight * a_w * tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                                       labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                                       name="entropy"))


    valid_loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                          labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                          name="valid_entropy")))
   
    tf.summary.scalar("train_loss", loss)
    tf.summary.scalar("valid_loss", valid_loss)
    tf.summary.scalar("learning_rate", learning_rate)

    trainable_var = tf.trainable_variables()
    if cfgs.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var, learning_rate)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()
    
    #Check if has the log file
    if not os.path.exists(cfgs.logs_dir):
        print("The logs path '%s' is not found" % cfgs.logs_dir)
        print("Create now..")
        os.makedirs(cfgs.logs_dir)
        print("%s is created successfully!" % cfgs.logs_dir)

    #Create a file to write logs.
    #filename='logs'+ cfgs.mode + str(datatime.datatime.now()) + '.txt'
    filename="logs_%s%s.txt"%(cfgs.mode,datetime.datetime.now())
    path_=os.path.join(cfgs.logs_dir,filename)
    with open(path_,'w') as logs_file:
        logs_file.write("The logs file is created at %s.\n" % datetime.datetime.now())
        logs_file.write("The model is ---%s---.\n" % cfgs.logs_dir)
        logs_file.write("The mode is %s\n"% (cfgs.mode))
        logs_file.write("The train data batch size is %d and the validation batch size is %d\n."%(cfgs.batch_size,cfgs.v_batch_size))
        logs_file.write("The data size is %d and the MAX_ITERATION is %d.\n" % (IMAGE_SIZE, MAX_ITERATION))
        logs_file.write("Setting up image reader...")

    
    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.my_read_dataset(cfgs.seq_list_path, cfgs.anno_path)
    print('number of train_records',len(train_records))
    print('number of valid_records',len(valid_records))
    with open(path_, 'a') as logs_file:
        logs_file.write('number of train_records %d\n' % len(train_records))
        logs_file.write('number of valid_records %d\n' % len(valid_records))

    path_lr = cfgs.learning_rate_path
    with open(path_lr, 'r') as f:
        lr_ = float(f.readline().split('\n')[0])


    print("Setting up dataset reader")
    vis = True if cfgs.mode == 'all_visualize' else False
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE, 'visualize': vis, 'annotation':True}

    if cfgs.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
   
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
    #save current train itr from stopping(init = 0)
    current_itr_var = tf.Variable(0, dtype=tf.int32, name='current_itr')
    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(cfgs.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(cfgs.logs_dir)
    #if not train,restore the model trained before
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    num_=0
    current_itr = current_itr_var.eval(sess)
    print('itr\tmode\tlr_\tacc\tiou_acc\tloss')
    time_begin = time.time()
    valid_time = 100
    for itr in xrange(current_itr, MAX_ITERATION):
        
        with open(path_lr, 'r') as f:
            lr_ = float(f.readline().split('\n')[0])
        
        train_images, train_annotations, if_finish, epoch_no= train_dataset_reader.next_batch(cfgs.batch_size)
        if if_finish:
            print('Epochs%d finished, time comsumed:%.5f' % (epoch_no, time.time()-time_begin))
            time_begin = time.time()
        feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85, learning_rate: lr_}
        

        sess.run(train_op, feed_dict=feed_dict)
        logs_file = open(path_, 'a')  
        if itr % 10 == 0:
            train_loss, summary_str = sess.run([loss, summary_op], feed_dict=feed_dict)
            print('%d\t%s\t%g\t%s\t%s\t%.6f' % (itr, 'train',lr_, 'None','None',train_loss))
            summary_writer.add_summary(summary_str, itr)

        if itr % valid_time == 0:
            with open('time_to_valid.txt', 'r') as f:
                valid_time = int(f.readline().split('\n')[0])


            #Caculate the accurary at the training set.
            train_random_images, train_random_annotations = train_dataset_reader.get_random_batch_for_train(cfgs.v_batch_size)
            train_loss,train_pred_anno = sess.run([loss,pred_annotation], feed_dict={image:train_random_images,
                                                                                        annotation:train_random_annotations,
                                                                                        keep_probability:1.0})
            accu_iou_,accu_pixel_ = accu.caculate_accurary(train_pred_anno, train_random_annotations)
            print('%d\t%s\t%g\t%.5f\t%.5f\t%.6f' % (itr, 'train', lr_, accu_pixel_, accu_iou_, train_loss))
            #Output the logs.
            num_ = num_ + 1
            logs_file.write('%d\t%s\t%g\t%.5f\t%.5f\t%.6f\n' % (itr, 'train', lr_, accu_pixel_, accu_iou_, train_loss))

            valid_images, valid_annotations, _, _= validation_dataset_reader.next_batch(cfgs.v_batch_size)
            #valid_loss = sess.run(loss, feed_dict={image: valid_images, annotation: valid_annotations,
                                                       #keep_probability: 1.0})
            valid_loss_,pred_anno=sess.run([loss,pred_annotation],feed_dict={image:valid_images,
                                                                                      annotation:valid_annotations,
                                                                                      keep_probability:1.0})
            accu_iou,accu_pixel=accu.caculate_accurary(pred_anno,valid_annotations)
            print('%d\t%s\t%g\t%.5f\t%.5f\t%.6f' % (itr, 'valid', lr_, accu_pixel, accu_iou, valid_loss_))
            #Output the logs.
            logs_file.write('%d\t%s\t%g\t%.5f\t%.5f\t%.6f\n' % (itr, 'train', lr_, accu_pixel, accu_iou, valid_loss_))

            #record current itr
            sess.run(tf.assign(current_itr_var, itr))
            saver.save(sess, cfgs.logs_dir + "model.ckpt", itr)
            #End the iterator
        '''
        if itr % 10000 == 0 and itr > 0:
            lr_ = lr_/10
            print('learning rate change from %g to %g' %(lr_*10, lr_))
            logs_file.write('learning rate change from %g to %g\n' %(lr_*10, lr_))'''
        logs_file.close()
Пример #2
0
def main(argv=None):
    # define placeholder{keep_probability,image,annotation}
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32,
                           shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3],
                           name="input_image")
    annotation = tf.placeholder(tf.int32,
                                shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                name="annotation")

    # execute inference then get pred_annotation, logits, and loss
    pred_annotation, logits = inference(image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth",
                     tf.cast(annotation, tf.uint8),
                     max_outputs=2)
    tf.summary.image("pred_annotation",
                     tf.cast(pred_annotation, tf.uint8),
                     max_outputs=2)
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits,
        labels=tf.squeeze(annotation, squeeze_dims=[3]),
        name="entropy")))
    tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()

    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    # Data_zoo/MIT_SceneParsing/
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records,
                                                   image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records,
                                                    image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(FLAGS.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if FLAGS.mode == "train":
        for itr in range(MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(
                FLAGS.batch_size)
            feed_dict = {
                image: train_images,
                annotation: train_annotations,
                keep_probability: 0.85
            }

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, summary_op],
                                                   feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                summary_writer.add_summary(summary_str, itr)

            if itr % 500 == 0:
                valid_images, valid_annotations = validation_dataset_reader.next_batch(
                    FLAGS.batch_size)
                valid_loss = sess.run(loss,
                                      feed_dict={
                                          image: valid_images,
                                          annotation: valid_annotations,
                                          keep_probability: 1.0
                                      })
                print("%s ---> Validation_loss: %g" %
                      (datetime.datetime.now(), valid_loss))
                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)

    elif FLAGS.mode == "visualize":
        valid_images, valid_annotations = validation_dataset_reader.get_random_batch(
            FLAGS.batch_size)
        pred = sess.run(pred_annotation,
                        feed_dict={
                            image: valid_images,
                            annotation: valid_annotations,
                            keep_probability: 1.0
                        })
        # single channle
        valid_annotations = np.squeeze(valid_annotations, axis=3)
        pred = np.squeeze(pred, axis=3)

        for itr in range(FLAGS.batch_size):
            utils.save_image(valid_images[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="inp_" + str(5 + itr))
            utils.save_image(valid_annotations[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="gt_" + str(5 + itr))
            utils.save_image(pred[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="pred_" + str(5 + itr))
            print("Saved image: %d" % itr)
Пример #3
0
 def get_data_video(self):
     with tf.device('/cpu:0'):
        self.video_dataset_reader = dataset.BatchDatset(self.valid_records, self.image_options)
Пример #4
0
 def get_data(self):
     with tf.device('/cpu:0'):
         if self.mode == 'train':
             self.train_dataset_reader = dataset.BatchDatset(self.train_records, self.image_options)
         self.validation_dataset_reader = dataset.BatchDatset(self.valid_records, self.image_options)
Пример #5
0
            cur_frame = line[cfgs.seq_num + 1].split(' ')[0]
            cur_frame_s = cur_frame.split("/")
            filename = '%s%s' % (cur_frame_s[len(cur_frame_s) - 3],
                                 os.path.splitext(cur_frame_s[-1])[0])
            print(filename)
            #anno_frame = os.path.join(anno_folder, filename+'.bmp')
            record = {
                'current': cur_frame,
                'seq': seq_set,
                'filename': filename
            }
            #print(record)
            seq_list[directory].append(record)

        random.shuffle(seq_list[directory])
        no_of_images = len(seq_list[directory])
        print('No of %s files %d' % (directory, no_of_images))

    return seq_list


if __name__ == '__main__':

    training_records, validation_records = my_read_dataset(
        cfgs.seq_list_path, cfgs.anno_path)
    image_options = {'resize': True, 'resize_size': 224}

    train_reader = dataset.BatchDatset(training_records, image_options)

    train_reader._read_images()
Пример #6
0
def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32,
                           shape=[None, IMAGE_SIZE, IMAGE_SIZE, 7],
                           name="input_image")
    annotation = tf.placeholder(tf.int32,
                                shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                name="annotation")

    pred_annotation_value, pred_annotation, logits, pred_prob = inference(
        image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth",
                     tf.cast(annotation, tf.uint8),
                     max_outputs=2)
    tf.summary.image("pred_annotation",
                     tf.cast(pred_annotation, tf.uint8),
                     max_outputs=2)
    #logits:the last layer of conv net
    #labels:the ground truth
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits,
        labels=tf.squeeze(annotation, squeeze_dims=[3]),
        name="entropy")))
    tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()
    if cfgs.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    #Create a file to write logs.
    #filename='logs'+ cfgs.mode + str(datetime.datetime.now()) + '.txt'
    filename = "logs_%s%s.txt" % (cfgs.mode, datetime.datetime.now())
    path_ = os.path.join(cfgs.logs_dir, filename)
    logs_file = open(path_, 'w')
    logs_file.write("The logs file is created at %s\n" %
                    datetime.datetime.now())
    logs_file.write("The mode is %s\n" % (cfgs.mode))
    logs_file.write(
        "The train data batch size is %d and the validation batch size is %d.\n"
        % (cfgs.batch_size, cfgs.v_batch_size))
    logs_file.write("The train data is %s.\n" % (cfgs.data_dir))
    logs_file.write("The model is ---%s---.\n" % cfgs.logs_dir)

    print("Setting up image reader...")
    logs_file.write("Setting up image reader...\n")
    train_records, valid_records = scene_parsing.my_read_video_dataset(
        cfgs.seq_list_path, cfgs.anno_path)
    print('number of train_records', len(train_records))
    print('number of valid_records', len(valid_records))
    logs_file.write('number of train_records %d\n' % len(train_records))
    logs_file.write('number of valid_records %d\n' % len(valid_records))

    print("Setting up dataset reader")
    vis = True if cfgs.mode == 'all_visualize' else False
    image_options = {
        'resize': True,
        'resize_size': IMAGE_SIZE,
        'visualize': vis
    }

    if cfgs.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records,
                                                   image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records,
                                                    image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(cfgs.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(cfgs.logs_dir)
    #if not train,restore the model trained before
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if cfgs.mode == "accurary":
        count = 0
        if_con = True
        accu_iou_t = 0
        accu_pixel_t = 0

        while if_con:
            count = count + 1
            valid_images, valid_annotations, valid_filenames, if_con, start, end = validation_dataset_reader.next_batch_valid(
                cfgs.v_batch_size)
            valid_loss, pred_anno = sess.run(
                [loss, pred_annotation],
                feed_dict={
                    image: valid_images,
                    annotation: valid_annotations,
                    keep_probability: 1.0
                })
            accu_iou, accu_pixel = accu.caculate_accurary(
                pred_anno, valid_annotations)
            print("Ture %d ---> the data from %d to %d" % (count, start, end))
            print("%s ---> Validation_pixel_accuary: %g" %
                  (datetime.datetime.now(), accu_pixel))
            print("%s ---> Validation_iou_accuary: %g" %
                  (datetime.datetime.now(), accu_iou))
            #Output logs.
            logs_file.write("Ture %d ---> the data from %d to %d\n" %
                            (count, start, end))
            logs_file.write("%s ---> Validation_pixel_accuary: %g\n" %
                            (datetime.datetime.now(), accu_pixel))
            logs_file.write("%s ---> Validation_iou_accuary: %g\n" %
                            (datetime.datetime.now(), accu_iou))

            accu_iou_t = accu_iou_t + accu_iou
            accu_pixel_t = accu_pixel_t + accu_pixel
        print("%s ---> Total validation_pixel_accuary: %g" %
              (datetime.datetime.now(), accu_pixel_t / count))
        print("%s ---> Total validation_iou_accuary: %g" %
              (datetime.datetime.now(), accu_iou_t / count))
        #Output logs
        logs_file.write("%s ---> Total validation_pixel_accurary: %g\n" %
                        (datetime.datetime.now(), accu_pixel_t / count))
        logs_file.write("%s ---> Total validation_iou_accurary: %g\n" %
                        (datetime.datetime.now(), accu_iou_t / count))

    elif cfgs.mode == "all_visualize":

        re_save_dir = "%s%s" % (cfgs.result_dir, datetime.datetime.now())
        logs_file.write("The result is save at file'%s'.\n" % re_save_dir)
        logs_file.write("The number of part visualization is %d.\n" %
                        cfgs.v_batch_size)

        #Check the result path if exists.
        if not os.path.exists(re_save_dir):
            print("The path '%s' is not found." % re_save_dir)
            print("Create now ...")
            os.makedirs(re_save_dir)
            print("Create '%s' successfully." % re_save_dir)
            logs_file.write("Create '%s' successfully.\n" % re_save_dir)

        re_save_dir_im = os.path.join(re_save_dir, 'images')
        re_save_dir_heat = os.path.join(re_save_dir, 'heatmap')
        re_save_dir_ellip = os.path.join(re_save_dir, 'ellip')
        re_save_dir_transheat = os.path.join(re_save_dir, 'transheat')
        if not os.path.exists(re_save_dir_im):
            os.makedirs(re_save_dir_im)
        if not os.path.exists(re_save_dir_heat):
            os.makedirs(re_save_dir_heat)
        if not os.path.exists(re_save_dir_ellip):
            os.makedirs(re_save_dir_ellip)
        if not os.path.exists(re_save_dir_transheat):
            os.makedirs(re_save_dir_transheat)

        count = 0
        if_con = True
        accu_iou_t = 0
        accu_pixel_t = 0

        while if_con:
            count = count + 1
            valid_images, valid_filename, valid_cur_images, if_con, start, end = validation_dataset_reader.next_batch_video_valid(
                cfgs.v_batch_size)
            pred_value, pred, logits_, pred_prob_ = sess.run(
                [pred_annotation_value, pred_annotation, logits, pred_prob],
                feed_dict={
                    image: valid_images,
                    keep_probability: 1.0
                })
            print("Turn %d :----start from %d ------- to %d" %
                  (count, start, end))
            pred = np.squeeze(pred, axis=3)
            pred_value = np.squeeze(pred_value, axis=3)

            for itr in range(len(pred)):
                filename = valid_filename[itr]['filename']
                valid_images_ = pred_visualize(valid_cur_images[itr].copy(),
                                               pred[itr])
                utils.save_image(valid_images_.astype(np.uint8),
                                 re_save_dir_im,
                                 name="inp_" + filename)

                if cfgs.fit_ellip:
                    #valid_images_ellip=fit_ellipse_findContours_ori(valid_images[itr].copy(),np.expand_dims(pred[itr],axis=2).astype(np.uint8))
                    valid_images_ellip = fit_ellipse_findContours(
                        valid_cur_images[itr].copy(),
                        np.expand_dims(pred[itr], axis=2).astype(np.uint8))
                    utils.save_image(valid_images_ellip.astype(np.uint8),
                                     re_save_dir_ellip,
                                     name="ellip_" + filename)
                if cfgs.heatmap:
                    heat_map = density_heatmap(pred_prob_[itr, :, :, 1])
                    utils.save_image(heat_map.astype(np.uint8),
                                     re_save_dir_heat,
                                     name="heat_" + filename)
                if cfgs.trans_heat:
                    trans_heat_map = translucent_heatmap(
                        valid_cur_images[itr],
                        heat_map.astype(np.uint8).copy())
                    utils.save_image(trans_heat_map,
                                     re_save_dir_transheat,
                                     name="trans_heat_" + filename)
Пример #7
0
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver( max_to_keep=10)
    summary_writer = tf.summary.FileWriter(FLAGS.logs_dir+'/train', sess.graph)
    # tval_summary_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/val', sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")