return conf def toJson(self): conf = ClassifierConfiguration.toJson(self) conf['__type__'] = 'SvcConfiguration' conf['c'] = self.c.toJson() return conf def probabilistModel(self): return False def semiSupervisedModel(self): return False def featureCoefficients(self): return True @staticmethod def generateParser(parser): classifier_group = ClassifierConfiguration.generateParser(parser) @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs( args, experiment) return params ClassifierConfFactory.getFactory().registerClass('SvcConfiguration', SvcConfiguration)
help=help_message) parser.add_argument('--min-impurity-decrease', type=float, default=0, help=help_message) parser.add_argument('--presort', type=bool, default=True) @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs( args, experiment) params['sample_weight'] = args.sample_weight params['loss'] = args.loss params['learning_rate'] = args.learning_rate params['n_estimators'] = args.n_estimators params['max_features'] = args.max_features params['criterion'] = args.criterion params['max_depth'] = args.max_depth params['min_samples_split'] = args.min_samples_split params['subsample'] = args.subsample params['min_samples_leaf'] = args.min_samples_leaf params['min_weight_fraction_leaf'] = args.min_weight_fraction_leaf params['max_leaf_nodes'] = args.max_leaf_nodes params['min_impurity_decrease'] = args.min_impurity_decrease params['presort'] = args.presort return params ClassifierConfFactory.getFactory().registerClass( 'GradientBoostingConfiguration', GradientBoostingConfiguration)
conf['penalty'] = self.penalty.toJson() return conf def probabilistModel(self): return True def semiSupervisedModel(self): return False def featureCoefficients(self): return not (self.families_supervision) @staticmethod def generateParser(parser): ClassifierConfiguration.generateParser(parser) parser.add_argument('--optim-algo', choices=['sag', 'liblinear'], default='liblinear', help='sag is recommended for large datasets.') @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs( args, experiment) params['optim_algo'] = args.optim_algo return params ClassifierConfFactory.getFactory().registerClass( 'LogisticRegressionConfiguration', LogisticRegressionConfiguration)
def setBestValues(self, grid_search): return def getBestValues(self): return None @staticmethod def fromJson(obj, exp): conf = LabelPropagationConfiguration(obj['num_folds'], obj['families_supervision']) ClassifierConfiguration.setTestConfiguration(conf, obj, exp) return conf def toJson(self): conf = ClassifierConfiguration.toJson(self) conf['__type__'] = 'LabelPropagationConfiguration' return conf def probabilistModel(self): return True def semiSupervisedModel(self): return True def featureCoefficients(self): return False ClassifierConfFactory.getFactory().registerClass( 'LabelPropagationConfiguration', LabelPropagationConfiguration)
type=int, default=None, help=help_message) parser.add_argument('--max-leaf_nodes', type=int, default=None, help=help_message) parser.add_argument('--min-impurity-decrease', type=float, default=0, help=help_message) @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs( args, experiment) params['criterion'] = args.criterion params['splitter'] = args.splitter params['max_depth'] = args.max_depth params['min_samples_split'] = args.min_samples_split params['min_samples_leaf'] = args.min_samples_leaf params['min_weight_fraction_leaf'] = args.min_weight_fraction_leaf params['max_features'] = args.max_features params['max_leaf_nodes'] = args.max_leaf_nodes params['min_impurity_decrease'] = args.min_impurity_decrease return params ClassifierConfFactory.getFactory().registerClass('DecisionTreeConfiguration', DecisionTreeConfiguration)
type=int, default=None, help=help_message) parser.add_argument('--min-impurity-decrease', type=float, default=0, help=help_message) parser.add_argument('--bootstrap', type=bool, default=True) parser.add_argument('--oob-score', type=bool, default=False) @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs( args, experiment) params['n_estimators'] = args.n_estimators params['criterion'] = args.criterion params['max_features'] = args.max_features params['max_depth'] = args.max_depth params['min_samples_split'] = args.min_samples_split params['min_samples_leaf'] = args.min_samples_leaf params['min_weight_fraction_leaf'] = args.min_weight_fraction_leaf params['max_leaf_nodes'] = args.max_leaf_nodes params['min_impurity_decrease'] = args.min_impurity_decrease params['bootstrap'] = args.bootstrap params['oob_score'] = args.oob_score return params ClassifierConfFactory.getFactory().registerClass('RandomForestConfiguration', RandomForestConfiguration)
conf = GaussianNaiveBayesConfiguration(obj['num_folds'], obj['sample_weight'], obj['families_supervision'], test_conf) ClassifierConfiguration.setTestConfiguration(conf, obj, exp) return conf def toJson(self): conf = ClassifierConfiguration.toJson(self) conf['__type__'] = 'GaussianNaiveBayesConfiguration' return conf def probabilistModel(self): return True def semiSupervisedModel(self): return False def featureCoefficients(self): return False @staticmethod def generateParser(parser): classifier_group = ClassifierConfiguration.generateParser(parser) @staticmethod def generateParamsFromArgs(args, experiment): params = ClassifierConfiguration.generateParamsFromArgs(args, experiment) return params ClassifierConfFactory.getFactory().registerClass('GaussianNaiveBayesConfiguration', GaussianNaiveBayesConfiguration)