def main(): img_path = "lena.png" dataset_path = "/home/martin/datasets/flickr/thumbnails" dataset_csv = "dataset.csv" block_size = 64 dataset = Dataset(dataset_path) #dataset.create() file_paths, rgb_means = dataset.load(dataset_csv) collage = Collage(img_path, file_paths, rgb_means, block_size) img_collage = collage.create() io.imsave("collage.png", img_collage)
def flag_3(): if resp_1=="si" or resp_2=="si": return else: Collage.collage(nom,tam,RAM) return
def flag_2(): if resp_1=="No" or resp_1=="NO" or resp_1=="no": return else: Collage.collage_sec() return
import Image import Collage import Particiones Collage.hola() datos=[0,0,0,0,0,0,0,0] def flag_1(): if resp_2=="No" or resp_2=="NO" or resp_2=="no": return else: Particiones.imag_part(dim_part,nom) return def flag_2(): if resp_1=="No" or resp_1=="NO" or resp_1=="no": return else: Collage.collage_sec() return def flag_3(): if resp_1=="si" or resp_2=="si": return else: Collage.collage(nom,tam,RAM) return
def flag_3(): if resp_1 == "si" or resp_2 == "si": return else: Collage.collage(nom, tam, RAM) return
def flag_2(): if resp_1 == "No" or resp_1 == "NO" or resp_1 == "no": return else: Collage.collage_sec() return
import Image import Collage import Particiones Collage.hola() datos = [0, 0, 0, 0, 0, 0, 0, 0] def flag_1(): if resp_2 == "No" or resp_2 == "NO" or resp_2 == "no": return else: Particiones.imag_part(dim_part, nom) return def flag_2(): if resp_1 == "No" or resp_1 == "NO" or resp_1 == "no": return else: Collage.collage_sec() return def flag_3(): if resp_1 == "si" or resp_2 == "si": return else: