def print_and_log_test_one_epoch(mse2test, res2test, log_out=None):
    # 将运行结果打印出来
    print('mean square error of predict and real for testing: %.10f' %
          mse2test)
    print('residual error of predict and real for testing: %.10f\n' % res2test)

    DNN_tools.log_string(
        'mean square error of predict and real for testing: %.10f' % mse2test,
        log_out)
    DNN_tools.log_string(
        'residual error of predict and real for testing: %.10f\n\n' % res2test,
        log_out)
Пример #2
0
def dictionary_out2file(R_dic,
                        log_fileout,
                        actName2normal=None,
                        actName2scale=None):
    DNN_tools.log_string('PDE type for problem: %s\n' % (R_dic['PDE_type']),
                         log_fileout)
    DNN_tools.log_string(
        'Equation name for problem: %s\n' % (R_dic['equa_name']), log_fileout)
    DNN_tools.log_string(
        'The order to p-laplace: %s\n' % (R_dic['order2laplace']), log_fileout)
    DNN_tools.log_string('The epsilon to p-laplace: %s\n' % (R_dic['epsilon']),
                         log_fileout)

    DNN_tools.log_string(
        'Network model of solving normal-part: %s\n' %
        str(R_dic['model2normal']), log_fileout)
    DNN_tools.log_string(
        'Network model of solving scale-part: %s\n' %
        str(R_dic['model2scale']), log_fileout)
    DNN_tools.log_string(
        'Activate function for normal-part network: %s\n' %
        str(actName2normal), log_fileout)
    DNN_tools.log_string(
        'Activate function for scale-part network: %s\n' % str(actName2scale),
        log_fileout)
    DNN_tools.log_string(
        'hidden layer to normal:%s\n' % str(R_dic['hidden2normal']),
        log_fileout)
    DNN_tools.log_string(
        'hidden layer to scale :%s\n' % str(R_dic['hidden2scale']),
        log_fileout)
    DNN_tools.log_string(
        'The frequency to scale-part network: %s\n' % (R_dic['freqs']),
        log_fileout)

    if (R_dic['optimizer_name']).title() == 'Adam':
        DNN_tools.log_string('optimizer:%s\n' % str(R_dic['optimizer_name']),
                             log_fileout)
    else:
        DNN_tools.log_string(
            'optimizer:%s  with momentum=%f\n' %
            (R_dic['optimizer_name'], R_dic['momentum']), log_fileout)

    if R_dic['variational_loss'] == 1 or R_dic['variational_loss'] == 2:
        DNN_tools.log_string(
            'Loss function: variational loss ' +
            str(R_dic['variational_loss']) + '\n', log_fileout)
    else:
        DNN_tools.log_string('Loss function: original function loss\n',
                             log_fileout)

    if R_dic['variational_loss'] == 1:
        if R_dic['wavelet'] == 1:
            DNN_tools.log_string(
                'Option of loss for coarse and fine is: L2 wavelet. \n',
                log_fileout)
        elif R_dic['wavelet'] == 2:
            DNN_tools.log_string(
                'Option of loss for coarse and fine is: Energy minimization. \n',
                log_fileout)
        else:
            DNN_tools.log_string(
                'Option of loss for coarse and fine is: L2 wavelet + Energy minimization. \n',
                log_fileout)

    if R_dic['variational_loss'] == 2:
        if R_dic['wavelet'] == 1:
            DNN_tools.log_string(
                'Option of loss for coarse and fine is: L2 wavelet. \n',
                log_fileout)

    if R_dic['activate_stop'] != 0:
        DNN_tools.log_string(
            'activate the stop_step and given_step= %s\n' %
            str(R_dic['max_epoch']), log_fileout)
    else:
        DNN_tools.log_string(
            'no activate the stop_step and given_step = default: %s\n' %
            str(R_dic['max_epoch']), log_fileout)

    DNN_tools.log_string(
        'Init learning rate: %s\n' % str(R_dic['learning_rate']), log_fileout)

    DNN_tools.log_string(
        'Decay to learning rate: %s\n' % str(R_dic['learning_rate_decay']),
        log_fileout)

    DNN_tools.log_string(
        'Batch-size 2 interior: %s\n' % str(R_dic['batch_size2interior']),
        log_fileout)
    DNN_tools.log_string(
        'Batch-size 2 boundary: %s\n' % str(R_dic['batch_size2boundary']),
        log_fileout)

    DNN_tools.log_string(
        'Initial boundary penalty: %s\n' % str(R_dic['init_boundary_penalty']),
        log_fileout)
    if R_dic['activate_penalty2bd_increase'] == 1:
        DNN_tools.log_string(
            'The penalty of boundary will increase with training going on.\n',
            log_fileout)
    elif R_dic['activate_penalty2bd_increase'] == 2:
        DNN_tools.log_string(
            'The penalty of boundary will decrease with training going on.\n',
            log_fileout)
    else:
        DNN_tools.log_string(
            'The penalty of boundary will keep unchanged with training going on.\n',
            log_fileout)
Пример #3
0
def solve_Integral_Equa(R):
    log_out_path = R['FolderName']  # 将路径从字典 R 中提取出来
    if not os.path.exists(log_out_path):  # 判断路径是否已经存在
        os.mkdir(log_out_path)  # 无 log_out_path 路径,创建一个 log_out_path 路径
    outFile2para_name = '%s_%s.txt' % ('para2', 'beta')
    logfile_name = '%s%s.txt' % ('log2', R['activate_func'])
    log_fileout = open(os.path.join(log_out_path, logfile_name),
                       'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件
    para_outFile = open(os.path.join(log_out_path, outFile2para_name),
                        'w')  # 在这个路径下创建并打开一个可写的 para_outFile.txt文件
    DNN_Log_Print.dictionary_out2file(R, log_fileout)

    # 方程问题需要的设置
    batchsize2bS = R['batch_size2bS']
    batchsize2b = R['batch_size2y_b']
    batchsize2integral = R['batch_size2integral']
    wb_regular = R['regular_weight_biases']
    if R['training_strategy'] == 'Alter_train':
        init_lr2b = R['init_learning_rate2b']
        init_lr2S = R['init_learning_rate2S']
        lr_decay2b = R['learning_rate_decay2b']
        lr_decay2S = R['learning_rate_decay2S']
    else:
        lr_decay = R['learning_rate_decay']
        init_lr = R['init_learning_rate']
    hidden_layers = R['hidden_layers']
    act_func = R['activate_func']

    # ------- set the problem ---------
    data_indim = R['input_dim']
    para_dim = R['estimate_para_dim']

    # bNN是否和参数 beta 显式相关,即参数 beta 作为bNN的一个输入。是:数据维数+参数维数;否:数据维数
    if R['bnn2beta'] == 'explicitly_related':
        bNN_inDim = data_indim + para_dim
    else:
        bNN_inDim = data_indim

    # 初始化权重和和偏置的模式。bNN是一个整体的网络表示,还是分为几个独立的网格表示 b 的每一个分量 bi. b=(b0,b1,b2,......)
    if R['sub_networks'] == 'subDNNs':
        flag_b0 = 'bnn0'
        flag_b1 = 'bnn1'
        bNN_outDim = 1
        if R['name2network'] == 'DNN_Cos_C_Sin_Base':
            W2b0, B2b0 = DNN_base.initialize_NN_random_normal2_CS(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b0,
                unit_const_Init1layer=False)
            W2b1, B2b1 = DNN_base.initialize_NN_random_normal2_CS(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b1,
                unit_const_Init1layer=False)
        else:
            W2b0, B2b0 = DNN_base.initialize_NN_random_normal2(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b0,
                unit_const_Init1layer=False)
            W2b1, B2b1 = DNN_base.initialize_NN_random_normal2(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b0,
                unit_const_Init1layer=False)
    else:
        bNN_outDim = para_dim
        flag_b = 'bnn'
        if R['name2network'] == 'DNN_Cos_C_Sin_Base':
            W2b, B2b = DNN_base.initialize_NN_random_normal2_CS(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b,
                unit_const_Init1layer=False)
        else:
            W2b, B2b = DNN_base.initialize_NN_random_normal2(
                bNN_inDim,
                bNN_outDim,
                hidden_layers,
                flag_b,
                unit_const_Init1layer=False)

    global_steps = tf.Variable(0, trainable=False)
    with tf.device('/gpu:%s' % (R['gpuNo'])):
        with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE):
            X = tf.placeholder(tf.float32,
                               name='X_recv',
                               shape=[batchsize2bS, data_indim])
            Y = tf.placeholder(tf.float32,
                               name='Y_recv',
                               shape=[batchsize2bS, data_indim])
            R2XY = tf.placeholder(tf.float32,
                                  name='R2XY_recv',
                                  shape=[batchsize2bS, data_indim])
            tfOne = tf.placeholder(tf.float32,
                                   shape=[batchsize2bS, data_indim],
                                   name='tfOne')

            y = tf.placeholder(tf.float32,
                               name='y_recv',
                               shape=[batchsize2b, data_indim])
            t_inte = tf.placeholder(tf.float32,
                                    name='t_integral',
                                    shape=[batchsize2integral, data_indim])
            beta = tf.Variable(tf.random.uniform([1, para_dim]),
                               dtype='float32',
                               name='beta')
            # beta = tf.Variable([[0.25, -0.5]], dtype='float32', name='beta')
            # beta = tf.constant([[0.25, -0.5]], dtype=tf.float32, name='beta')

            inline_lr = tf.placeholder_with_default(
                input=1e-2, shape=[], name='inline_learning_rate')
            inline_lr2b = tf.placeholder_with_default(
                input=1e-2, shape=[], name='inline_learning_rate2b')
            inline_lr2S = tf.placeholder_with_default(
                input=1e-2, shape=[], name='inline_learning_rate2S')

            if R['bnn2beta'] == 'explicitly_related':
                Repeat_beta2t = tf.tile(beta, [batchsize2integral, 1])
                tInte_beta = tf.concat([t_inte, Repeat_beta2t], axis=-1)

                Repeat_beta2y = tf.tile(beta, [batchsize2b, 1])
                y_beta = tf.concat([y, Repeat_beta2y], axis=-1)

                Repeat_beta2Y = tf.tile(beta, [batchsize2bS, 1])
                Y_beta = tf.concat([Y, Repeat_beta2Y], axis=-1)
            else:
                tInte_beta = t_inte
                y_beta = y
                Y_beta = Y

            if R['sub_networks'] == 'subDNNs':
                if R['name2network'] == str('DNN'):
                    b0_NN2t = DNN_base.PDE_DNN(tInte_beta,
                                               W2b0,
                                               B2b0,
                                               hidden_layers,
                                               activate_name=act_func)
                    b1_NN2t = DNN_base.PDE_DNN(tInte_beta,
                                               W2b1,
                                               B2b1,
                                               hidden_layers,
                                               activate_name=act_func)
                    b0_NN2y = DNN_base.PDE_DNN(y_beta,
                                               W2b0,
                                               B2b0,
                                               hidden_layers,
                                               activate_name=act_func)
                    b1_NN2y = DNN_base.PDE_DNN(y_beta,
                                               W2b1,
                                               B2b1,
                                               hidden_layers,
                                               activate_name=act_func)
                    b0_NN2Y = DNN_base.PDE_DNN(Y_beta,
                                               W2b0,
                                               B2b0,
                                               hidden_layers,
                                               activate_name=act_func)
                    b1_NN2Y = DNN_base.PDE_DNN(Y_beta,
                                               W2b1,
                                               B2b1,
                                               hidden_layers,
                                               activate_name=act_func)
                elif R['name2network'] == 'DNN_Cos_C_Sin_Base':
                    freq = R['freqs']
                    b0_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        tInte_beta,
                        W2b0,
                        B2b0,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b1_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        tInte_beta,
                        W2b1,
                        B2b1,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b0_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        y_beta,
                        W2b0,
                        B2b0,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b1_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        y_beta,
                        W2b1,
                        B2b1,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b0_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        Y_beta,
                        W2b0,
                        B2b0,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b1_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        Y_beta,
                        W2b1,
                        B2b1,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                b_NN2t = tf.concat([b0_NN2t, b1_NN2t], axis=-1)
                b_NN2y = tf.concat([b0_NN2y, b1_NN2y], axis=-1)
                b_NN2Y = tf.concat([b0_NN2Y, b1_NN2Y], axis=-1)
            else:
                if R['name2network'] == str('DNN'):
                    b_NN2t = DNN_base.PDE_DNN(tInte_beta,
                                              W2b,
                                              B2b,
                                              hidden_layers,
                                              activate_name=act_func)
                    b_NN2y = DNN_base.PDE_DNN(y_beta,
                                              W2b,
                                              B2b,
                                              hidden_layers,
                                              activate_name=act_func)
                    b_NN2Y = DNN_base.PDE_DNN(Y_beta,
                                              W2b,
                                              B2b,
                                              hidden_layers,
                                              activate_name=act_func)
                elif R['name2network'] == 'DNN_Cos_C_Sin_Base':
                    freq = R['freqs']
                    b_NN2t = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        tInte_beta,
                        W2b,
                        B2b,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        y_beta,
                        W2b,
                        B2b,
                        hidden_layers,
                        freq,
                        activate_name=act_func)
                    b_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base(
                        Y_beta,
                        W2b,
                        B2b,
                        hidden_layers,
                        freq,
                        activate_name=act_func)

            # 如下代码说明中 K 代表y的数目, N 代表 X 和 Y 的数目,M 代表 t 的数目
            # 求 b 的代码,先处理等号左边,再处理等号右边
            OneX = tf.concat([tfOne, X], axis=-1)  # N 行 (1+dim) 列,N代表X数据数目
            betaT = tf.transpose(beta, perm=[1, 0])  # (1+dim) 行 1 列
            oneX_betaT = tf.matmul(
                OneX, betaT)  # N 行 1 列。每个 Xi 都会对应 beta。 beta 是 (1+dim) 行 1 列的
            tInte_beraXT = tf.transpose(t_inte, perm=[
                1, 0
            ]) - oneX_betaT  # N 行 M 列,t_inte 是 M 行 dim 列的

            # b方程左边系数分母,关于t求和平均代替积分
            fYX_t = fYX(z=tInte_beraXT,
                        func_name='gaussian')  # fY|X在t处的取值  # N 行 M 列
            phi_1 = tf.transpose(1 - pi_star(t=t_inte),
                                 perm=[1, 0])  # M 行 dim 列转置为 dim 行 M 列
            fYXt_1phi = tf.multiply(fYX_t, phi_1)  # N 行 M 列
            fYXt_1phi_intergal = tf.reduce_mean(fYXt_1phi, axis=-1)
            fYXt_1phi_intergal = tf.reshape(fYXt_1phi_intergal,
                                            shape=[-1, 1])  # N 行 dim 列

            # b方程左边系数分子,关于t求和平均代替积分
            dbeta2fYX_t = fYX_t * tInte_beraXT  # N 行 M 列
            expand_dbeta2fYX_t = tf.expand_dims(dbeta2fYX_t,
                                                axis=1)  # N 页 1 行 M 列
            tilde_Edbeta2fYX_t = tf.tile(
                expand_dbeta2fYX_t,
                [1, data_indim + 1, 1])  # N 页 (1+dim) 行 M 列
            dfYX_beta_t = tf.multiply(tilde_Edbeta2fYX_t,
                                      tf.expand_dims(
                                          OneX, axis=-1))  # N 页 (1+dim) 行 M 列
            phi_t = tf.transpose(pi_star(t=t_inte),
                                 perm=[1, 0])  # M 行 1 列转置为 1 行 M 列
            dfYX_beta_phi_t = tf.multiply(dfYX_beta_t,
                                          phi_t)  # N 页 (1+dim) 行 M 列
            dfYX_beta_integral = tf.reduce_mean(dfYX_beta_phi_t,
                                                axis=-1)  # N 行 (1+dim) 列

            # b方程左边的系数
            ceof2left = dfYX_beta_integral / fYXt_1phi_intergal  # N 行 (1+dim) 列
            # b方程左边积分系数的匹配项
            yaux_beraXT = tf.transpose(
                y, perm=[1, 0]) - oneX_betaT  # N 行 K 列, y 是 K 行 data_dim 列
            fYX_y = fYX(z=yaux_beraXT,
                        func_name='gaussian')  # fY|X在y处的取值, N 行 K 列
            expand_fYX_y = tf.expand_dims(fYX_y, axis=1)  # N 页 1 行 K 列
            bleft_fYX_y = tf.multiply(tf.expand_dims(ceof2left, axis=-1),
                                      expand_fYX_y)  # N 页 (1+dim) 行 K 列

            # b方程左边的第一个关于beta的导数项, 即dfYX2beta(y,Xi,beta)
            dbeta2fYX_y = fYX_y * yaux_beraXT  # N 行 K 列
            expand_dbeta2fYX_y = tf.expand_dims(dbeta2fYX_y,
                                                axis=1)  # N 页 1 行 K 列
            dfYX_beta_y = tf.multiply(expand_dbeta2fYX_y,
                                      tf.expand_dims(
                                          OneX, axis=-1))  # N 页 (1+dim) 行 K 列

            # b方程左边的组合结果
            sum2bleft = bleft_fYX_y + dfYX_beta_y  # N 页 (1+dim) 行 K 列
            bleft = tf.reduce_mean(sum2bleft, axis=0)  # 1+dim 行 K 列

            # b 方程的右边。右边的第一项,如下两行计算
            trans_b_NN2y = tf.transpose(
                b_NN2y, perm=[1, 0])  # K 行 2 列转置为 2 行 K 列,然后扩为 1 X 2 X K 的
            by_fYX_y = tf.multiply(tf.expand_dims(trans_b_NN2y, axis=0),
                                   tf.expand_dims(fYX_y,
                                                  axis=1))  # N 页 1+dim 行 K 列

            # b方程右边的系数的分子
            expand_fYX_t = tf.tile(
                tf.expand_dims(fYX_t, axis=1),
                [1, 1 + data_indim, 1])  # N 页 (1+data_indim) 行 M 列
            bt_fYXt = tf.multiply(tf.transpose(b_NN2t, perm=[1, 0]),
                                  expand_fYX_t)  # N 页 (1+data_indim) 行 M 列
            bt_fYXt_phi = tf.multiply(bt_fYXt,
                                      phi_t)  # N 页 (1+data_indim) 行 M 列
            bt_fYXt_phi_integral = tf.reduce_mean(
                bt_fYXt_phi, axis=-1)  # N 行 (1+data_indim) 列

            # b方程右边的系数。分母为共用b方程左边的分母
            ceof2fight = bt_fYXt_phi_integral / fYXt_1phi_intergal  # N 行 (1+data_indim) 列

            # b方程系数与匹配项的线性积
            expand_fYX_y_right = tf.expand_dims(fYX_y, axis=1)  # N 页 1 行 K 列
            bright_fYX_y = tf.multiply(
                tf.expand_dims(ceof2fight, axis=-1),
                expand_fYX_y_right)  # N 页 (1+data_indim) 行 K 列

            # b方程右边的组合结果
            sum2right = by_fYX_y + bright_fYX_y  # N 页 (1+dim) 行 K 列
            bright = tf.reduce_mean(sum2right, axis=0)  # 1+dim 行 K 列

            # b方程左边和右边要相等,使用差的平方来估计
            loss2b = tf.reduce_mean(
                tf.reduce_mean(tf.square(bleft - bright), axis=-1))

            # 求 Seff 的代码
            Y_beraXT = Y - oneX_betaT  # N 行 dim 列, Y 和 oneX_betaT 都是 N 行 dim 列的

            fYX_Y = fYX(z=Y_beraXT,
                        func_name='gaussian')  # fY|X在t处的取值  # N 行 dim 列
            ceof2R = (R2XY / fYX_Y)  # N 行 dim 列, R2XY 是 N 行 dim 列的
            dbeta2fYX_Y = tf.multiply(fYX_Y, Y_beraXT)  # N 行 dim 列
            dfYX_beta_Y = tf.multiply(
                dbeta2fYX_Y,
                OneX)  # fY|X(t)对beta的导数,N行(1+dim)列,OneX 是 N 行 (1+dim) 列

            Sbeta_star1 = tf.multiply(ceof2R, dfYX_beta_Y)  # N 行 (1+dim)

            Seff_temp = tf.reshape(tf.reduce_mean(fYXt_1phi_intergal, axis=-1),
                                   shape=[-1, 1])  # N 行 dim 列
            ceof21R = (1 - R2XY) / Seff_temp  # N 行 dim 列
            Sbeta_star2 = tf.multiply(ceof21R,
                                      dfYX_beta_integral)  # N 行 (1+dim)

            Sbeta_star = Sbeta_star1 - Sbeta_star2  # N 行 (1+dim)

            Seff2 = tf.multiply(R2XY, b_NN2Y)  # N 行 (1+dim)

            Seff3 = tf.multiply(1 - R2XY, bt_fYXt_phi_integral /
                                fYXt_1phi_intergal)  # N 行 (1+dim)

            squareSeff = tf.square(Sbeta_star - Seff2 + Seff3)  # N 行 (1+dim)

            loss2Seff = tf.reduce_mean(tf.reduce_mean(squareSeff, axis=0))

            if R['sub_networks'] == 'subDNNs':
                if R['regular_weight_model'] == 'L1':
                    regular_WB2b0 = DNN_base.regular_weights_biases_L1(
                        W2b0, B2b0)
                    regular_WB2b1 = DNN_base.regular_weights_biases_L1(
                        W2b1, B2b1)
                elif R['regular_weight_model'] == 'L2':
                    regular_WB2b0 = DNN_base.regular_weights_biases_L2(
                        W2b0, B2b0)
                    regular_WB2b1 = DNN_base.regular_weights_biases_L2(
                        W2b1, B2b1)
                else:
                    regular_WB2b0 = tf.constant(0.0)
                    regular_WB2b1 = tf.constant(0.0)
                regular_WB2b = regular_WB2b0 + regular_WB2b1
            else:
                if R['regular_weight_model'] == 'L1':
                    regular_WB2b = DNN_base.regular_weights_biases_L1(W2b, B2b)
                elif R['regular_weight_model'] == 'L2':
                    regular_WB2b = DNN_base.regular_weights_biases_L2(W2b, B2b)
                else:
                    regular_WB2b = tf.constant(0.0)

            penalty_WB = wb_regular * regular_WB2b

            if R['training_strategy'] == 'Alter_train':
                lossB = loss2b + penalty_WB
                lossSeff = loss2Seff + penalty_WB
                if R['sub_networks'] == 'subDNNs':
                    WB = [W2b0, B2b0, W2b1, B2b1]
                else:
                    WB = [W2b, B2b]
                my_optimizer2b = tf.train.AdamOptimizer(inline_lr2b)
                my_optimizer2Seff = tf.train.AdamOptimizer(inline_lr2S)
                train_loss2b = my_optimizer2b.minimize(
                    lossB, global_step=global_steps, var_list=WB)
                train_loss2Seff = my_optimizer2Seff.minimize(
                    lossSeff, global_step=global_steps, var_list=beta)
            else:
                loss = 5 * loss2b + 10 * loss2Seff + penalty_WB  # 要优化的loss function

                my_optimizer = tf.train.AdamOptimizer(inline_lr)
                if R['train_group'] == 0:
                    train_my_loss = my_optimizer.minimize(
                        loss, global_step=global_steps)
                if R['train_group'] == 1:
                    if R['sub_networks'] == 'subDNNs':
                        WB = [W2b0, B2b0, W2b1, B2b1]
                    else:
                        WB = [W2b, B2b]
                    train_op1 = my_optimizer.minimize(loss2b,
                                                      global_step=global_steps,
                                                      var_list=WB)
                    train_op2 = my_optimizer.minimize(loss2Seff,
                                                      global_step=global_steps,
                                                      var_list=beta)
                    train_op3 = my_optimizer.minimize(loss,
                                                      global_step=global_steps)
                    train_my_loss = tf.group(train_op1, train_op2, train_op3)
                elif R['train_group'] == 2:
                    if R['sub_networks'] == 'subDNNs':
                        WB = [W2b0, B2b0, W2b1, B2b1]
                    else:
                        WB = [W2b, B2b]
                    train_op1 = my_optimizer.minimize(loss2b,
                                                      global_step=global_steps,
                                                      var_list=WB)
                    train_op2 = my_optimizer.minimize(loss2Seff,
                                                      global_step=global_steps,
                                                      var_list=beta)
                    train_my_loss = tf.group(train_op1, train_op2)

    t0 = time.time()
    loss_b_all, loss_seff_all, loss_all = [], [], []  # 空列表, 使用 append() 添加元素

    # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了
    config = tf.ConfigProto(allow_soft_placement=True)  # 创建sess的时候对sess进行参数配置
    config.gpu_options.allow_growth = True  # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。
    config.allow_soft_placement = True  # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行

    X_batch = DNN_data.randnormal_mu_sigma(size=batchsize2bS,
                                           mu=0.5,
                                           sigma=0.5)
    Y_init = 0.25 - 0.5 * X_batch + np.reshape(
        np.random.randn(batchsize2bS, 1), (-1, 1))
    # y_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.0, sigma=1.5)
    # x_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.5, sigma=0.5)
    # y_batch = 0.25 - 0.5 * x_aux_batch + np.reshape(np.random.randn(batchsize2aux, 1), (-1, 1))
    relate2XY = np.reshape(np.random.randint(0, 2, batchsize2bS), (-1, 1))
    Y_batch = np.multiply(Y_init, relate2XY)
    one2train = np.ones((batchsize2bS, 1))

    y_batch = DNN_data.rand_it(batch_size=batchsize2b,
                               variable_dim=data_indim,
                               region_a=-2,
                               region_b=2)
    t_batch = DNN_data.rand_it(batch_size=batchsize2integral,
                               variable_dim=data_indim,
                               region_a=-2,
                               region_b=2)

    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        if R['training_strategy'] == 'Alter_train':
            tmp_lr2b = init_lr2b
            tmp_lr2S = init_lr2S
            for i_epoch in range(R['max_epoch'] + 1):
                if i_epoch % 10 == 0 and i_epoch != 0:  # 10, 20, 30, 40,.....
                    tmp_lr2S = tmp_lr2S * (1 - lr_decay2S)
                    _S, loss2seff_tmp, loss2b_tmp, p_WB, beta_temp = sess.run(
                        [train_loss2Seff, loss2Seff, loss2b, penalty_WB, beta],
                        feed_dict={
                            X: X_batch,
                            Y: Y_batch,
                            R2XY: relate2XY,
                            y: y_batch,
                            tfOne: one2train,
                            t_inte: t_batch,
                            inline_lr2S: tmp_lr2S
                        })
                else:  # 0,1,2,3,4,5,6,7,8,9, 11,12,13,....,19, 21,22,....
                    tmp_lr2b = tmp_lr2b * (1 - lr_decay2b)
                    _b, loss2b_tmp, loss2seff_tmp, p_WB, beta_temp = sess.run(
                        [train_loss2b, loss2b, loss2Seff, penalty_WB, beta],
                        feed_dict={
                            X: X_batch,
                            Y: Y_batch,
                            R2XY: relate2XY,
                            y: y_batch,
                            tfOne: one2train,
                            t_inte: t_batch,
                            inline_lr2b: tmp_lr2b
                        })
                loss_seff_all.append(loss2seff_tmp)
                loss_b_all.append(loss2b_tmp)
                if (i_epoch % 10) == 0:
                    DNN_tools.log_string(
                        '*************** epoch: %d*10 ****************' %
                        int(i_epoch / 10), log_fileout)
                    DNN_tools.log_string(
                        'lossb for training: %.10f\n' % loss2b_tmp,
                        log_fileout)
                    DNN_tools.log_string(
                        'lossS for training: %.10f\n' % loss2seff_tmp,
                        log_fileout)
                    DNN_tools.log_string(
                        'Penalty2Weights_Bias for training: %.10f\n' % p_WB,
                        log_fileout)
                if (i_epoch % 100) == 0:
                    print(
                        '**************** epoch: %d*100 *******************' %
                        int(i_epoch / 100))
                    print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1]))
                    print('\n')
                    DNN_tools.log_string(
                        '*************** epoch: %d*100 *****************' %
                        int(i_epoch / 100), para_outFile)
                    DNN_tools.log_string(
                        'beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]),
                        para_outFile)
                    DNN_tools.log_string('\n', para_outFile)

            saveData.save_2trainLosses2mat(loss_b_all,
                                           loss_seff_all,
                                           data1Name='lossb',
                                           data2Name='lossSeff',
                                           actName=act_func,
                                           outPath=R['FolderName'])
            plotData.plotTrain_loss_1act_func(loss_b_all,
                                              lossType='loss_b',
                                              seedNo=R['seed'],
                                              outPath=R['FolderName'],
                                              yaxis_scale=True)
            plotData.plotTrain_loss_1act_func(loss_seff_all,
                                              lossType='loss_s',
                                              seedNo=R['seed'],
                                              outPath=R['FolderName'],
                                              yaxis_scale=True)
        else:
            tmp_lr = init_lr
            for i_epoch in range(R['max_epoch'] + 1):
                tmp_lr = tmp_lr * (1 - lr_decay)
                _, loss2b_tmp, loss2seff_tmp, loss_tmp, p_WB, beta_temp = sess.run(
                    [train_my_loss, loss2b, loss2Seff, loss, penalty_WB, beta],
                    feed_dict={
                        X: X_batch,
                        Y: Y_batch,
                        R2XY: relate2XY,
                        y: y_batch,
                        tfOne: one2train,
                        t_inte: t_batch,
                        inline_lr: tmp_lr
                    })

                loss_b_all.append(loss2b_tmp)
                loss_seff_all.append(loss2seff_tmp)
                loss_all.append(loss_tmp)
                if (i_epoch % 10) == 0:
                    DNN_tools.log_string(
                        '*************** epoch: %d*10 ****************' %
                        int(i_epoch / 10), log_fileout)
                    DNN_tools.log_string(
                        'lossb for training: %.10f\n' % loss2b_tmp,
                        log_fileout)
                    DNN_tools.log_string(
                        'lossS for training: %.10f\n' % loss2seff_tmp,
                        log_fileout)
                    DNN_tools.log_string(
                        'loss for training: %.10f\n' % loss_tmp, log_fileout)
                    DNN_tools.log_string(
                        'Penalty2Weights_Bias for training: %.10f\n' % p_WB,
                        log_fileout)
                if (i_epoch % 100) == 0:
                    print(
                        '**************** epoch: %d*100 *******************' %
                        int(i_epoch / 100))
                    print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1]))
                    print('\n')
                    DNN_tools.log_string(
                        '*************** epoch: %d*100 *****************' %
                        int(i_epoch / 100), para_outFile)
                    DNN_tools.log_string(
                        'beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]),
                        para_outFile)
                    DNN_tools.log_string('\n', para_outFile)

            saveData.save_3trainLosses2mat(loss_b_all,
                                           loss_seff_all,
                                           loss_all,
                                           data1Name='lossb',
                                           data2Name='lossSeff',
                                           data3Name='lossAll',
                                           actName=act_func,
                                           outPath=R['FolderName'])
            plotData.plotTrain_loss_1act_func(loss_b_all,
                                              lossType='loss_b',
                                              seedNo=R['seed'],
                                              outPath=R['FolderName'],
                                              yaxis_scale=True)
            plotData.plotTrain_loss_1act_func(loss_seff_all,
                                              lossType='loss_s',
                                              seedNo=R['seed'],
                                              outPath=R['FolderName'],
                                              yaxis_scale=True)
            plotData.plotTrain_loss_1act_func(loss_all,
                                              lossType='loss_all',
                                              seedNo=R['seed'],
                                              outPath=R['FolderName'],
                                              yaxis_scale=True)
Пример #4
0
def print_and_log2train(i_epoch,
                        run_time,
                        tmp_lr,
                        temp_penalty_nt,
                        penalty_wb2s,
                        penalty_wb2i,
                        penalty_wb2r,
                        loss_s,
                        loss_i,
                        loss_r,
                        loss_n,
                        loss,
                        log_out=None):
    print('train epoch: %d, time: %.3f' % (i_epoch, run_time))
    print('learning rate: %f' % tmp_lr)
    print('penalty for difference of predict and true : %f' % temp_penalty_nt)
    print('penalty weights and biases for S: %f' % penalty_wb2s)
    print('penalty weights and biases for I: %f' % penalty_wb2i)
    print('penalty weights and biases for R: %f' % penalty_wb2r)
    print('loss for S: %.16f' % loss_s)
    print('loss for I: %.16f' % loss_i)
    print('loss for R: %.16f' % loss_r)
    print('loss for N: %.16f\n' % loss_n)
    print('total loss: %.16f\n' % loss)

    DNN_tools.log_string('train epoch: %d,time: %.3f' % (i_epoch, run_time),
                         log_out)
    DNN_tools.log_string('learning rate: %f' % tmp_lr, log_out)
    DNN_tools.log_string(
        'penalty for difference of predict and true : %f' % temp_penalty_nt,
        log_out)
    DNN_tools.log_string('penalty weights and biases for S: %f' % penalty_wb2s,
                         log_out)
    DNN_tools.log_string('penalty weights and biases for I: %f' % penalty_wb2i,
                         log_out)
    DNN_tools.log_string(
        'penalty weights and biases for R: %.10f' % penalty_wb2r, log_out)
    DNN_tools.log_string('loss for S: %.16f' % loss_s, log_out)
    DNN_tools.log_string('loss for I: %.16f' % loss_i, log_out)
    DNN_tools.log_string('loss for R: %.16f' % loss_r, log_out)
    DNN_tools.log_string('loss for N: %.16f' % loss_n, log_out)
    DNN_tools.log_string('total loss: %.16f \n\n' % loss, log_out)
Пример #5
0
def dictionary_out2file(R_dic, log_fileout):
    DNN_tools.log_string(
        'Equation name for problem: %s\n' % (R_dic['eqs_name']), log_fileout)
    DNN_tools.log_string(
        'Network model for SIR: %s\n' % str(R_dic['model2sir']), log_fileout)
    DNN_tools.log_string(
        'Network model for parameters: %s\n' % str(R_dic['model2paras']),
        log_fileout)
    DNN_tools.log_string(
        'activate function for SIR : %s\n' % str(R_dic['act2sir']),
        log_fileout)
    DNN_tools.log_string(
        'activate function for parameters : %s\n' % str(R_dic['act2paras']),
        log_fileout)
    DNN_tools.log_string(
        'hidden layers for SIR: %s\n' % str(R_dic['hidden2SIR']), log_fileout)
    DNN_tools.log_string(
        'hidden layers for parameters: %s\n' % str(R_dic['hidden2para']),
        log_fileout)
    DNN_tools.log_string(
        'Init learning rate: %s\n' % str(R_dic['learning_rate']), log_fileout)
    DNN_tools.log_string(
        'Decay to learning rate: %s\n' % str(R_dic['lr_decay']), log_fileout)
    DNN_tools.log_string(
        'The type for Loss function: %s\n' % str(R_dic['loss_function']),
        log_fileout)
    if (R_dic['optimizer_name']).title() == 'Adam':
        DNN_tools.log_string('optimizer:%s\n' % str(R_dic['optimizer_name']),
                             log_fileout)
    else:
        DNN_tools.log_string(
            'optimizer:%s  with momentum=%f\n' %
            (R_dic['optimizer_name'], R_dic['momentum']), log_fileout)

    if R_dic['activate_stop'] != 0:
        DNN_tools.log_string(
            'activate the stop_step and given_step= %s\n' %
            str(R_dic['max_epoch']), log_fileout)
    else:
        DNN_tools.log_string(
            'no activate the stop_step and given_step = default: %s\n' %
            str(R_dic['max_epoch']), log_fileout)

    DNN_tools.log_string(
        'Initial penalty for difference of predict and true: %s\n' %
        str(R_dic['init_penalty2predict_true']), log_fileout)

    DNN_tools.log_string(
        'The model of regular weights and biases: %s\n' %
        str(R_dic['regular_weight_model']), log_fileout)

    DNN_tools.log_string(
        'Regularization parameter for weights and biases: %s\n' %
        str(R_dic['regular_weight']), log_fileout)

    DNN_tools.log_string(
        'Size 2 training set: %s\n' % str(R_dic['size2train']), log_fileout)

    DNN_tools.log_string(
        'Batch-size 2 training: %s\n' % str(R_dic['batch_size2train']),
        log_fileout)

    DNN_tools.log_string(
        'Batch-size 2 testing: %s\n' % str(R_dic['batch_size2test']),
        log_fileout)
Пример #6
0
def solve_SIR2COVID(R):
    log_out_path = R['FolderName']  # 将路径从字典 R 中提取出来
    if not os.path.exists(log_out_path):  # 判断路径是否已经存在
        os.mkdir(log_out_path)  # 无 log_out_path 路径,创建一个 log_out_path 路径
    log_fileout = open(os.path.join(log_out_path, 'log_train.txt'),
                       'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件
    DNN_LogPrint.dictionary_out2file(R, log_fileout)

    log2trianSolus = open(os.path.join(log_out_path, 'train_Solus.txt'),
                          'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件
    log2testSolus = open(os.path.join(log_out_path, 'test_Solus.txt'),
                         'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件
    log2testSolus2 = open(os.path.join(log_out_path, 'test_Solus_temp.txt'),
                          'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件

    log2testParas = open(os.path.join(log_out_path, 'test_Paras.txt'),
                         'w')  # 在这个路径下创建并打开一个可写的 log_train.txt文件

    trainSet_szie = R['size2train']
    batchSize_train = R['batch_size2train']
    batchSize_test = R['batch_size2test']
    pt_penalty_init = R[
        'init_penalty2predict_true']  # Regularization parameter for difference of predict and true
    wb_penalty = R['regular_weight']  # Regularization parameter for weights
    lr_decay = R['lr_decay']
    learning_rate = R['learning_rate']

    act_func2SIR = R['act2sir']
    act_func2paras = R['act2paras']

    input_dim = R['input_dim']
    out_dim = R['output_dim']

    flag2S = 'WB2S'
    flag2I = 'WB2I'
    flag2R = 'WB2R'
    flag2beta = 'WB2beta'
    flag2gamma = 'WB2gamma'
    hidden_sir = R['hidden2SIR']
    hidden_para = R['hidden2para']

    Weight2S, Bias2S = DNN.init_DNN(size2in=input_dim,
                                    size2out=out_dim,
                                    hiddens=hidden_sir,
                                    scope=flag2S,
                                    opt2Init=R['SIR_opt2init_NN'])
    Weight2I, Bias2I = DNN.init_DNN(size2in=input_dim,
                                    size2out=out_dim,
                                    hiddens=hidden_sir,
                                    scope=flag2I,
                                    opt2Init=R['SIR_opt2init_NN'])
    Weight2R, Bias2R = DNN.init_DNN(size2in=input_dim,
                                    size2out=out_dim,
                                    hiddens=hidden_sir,
                                    scope=flag2R,
                                    opt2Init=R['SIR_opt2init_NN'])

    Weight2beta, Bias2beta = DNN.init_DNN(size2in=input_dim,
                                          size2out=out_dim,
                                          hiddens=hidden_para,
                                          scope=flag2beta,
                                          opt2Init=R['Para_opt2init_NN'])
    Weight2gamma, Bias2gamma = DNN.init_DNN(size2in=input_dim,
                                            size2out=out_dim,
                                            hiddens=hidden_para,
                                            scope=flag2gamma,
                                            opt2Init=R['Para_opt2init_NN'])

    global_steps = tf.Variable(0, trainable=False)
    with tf.device('/gpu:%s' % (R['gpuNo'])):
        with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE):
            T_it = tf.placeholder(tf.float32,
                                  name='T_it',
                                  shape=[None, input_dim])
            I_observe = tf.placeholder(tf.float32,
                                       name='I_observe',
                                       shape=[None, input_dim])
            N_observe = tf.placeholder(tf.float32,
                                       name='N_observe',
                                       shape=[None, input_dim])
            predict_true_penalty = tf.placeholder_with_default(input=1e3,
                                                               shape=[],
                                                               name='bd_p')
            in_learning_rate = tf.placeholder_with_default(input=1e-5,
                                                           shape=[],
                                                           name='lr')
            train_opt = tf.placeholder_with_default(input=True,
                                                    shape=[],
                                                    name='train_opt')

            SNN_temp = DNN.PDE_DNN(x=T_it,
                                   hiddenLayer=hidden_sir,
                                   Weigths=Weight2S,
                                   Biases=Bias2S,
                                   DNNmodel=R['model2sir'],
                                   activation=act_func2SIR,
                                   freqs=R['freqs'])
            INN_temp = DNN.PDE_DNN(x=T_it,
                                   hiddenLayer=hidden_sir,
                                   Weigths=Weight2I,
                                   Biases=Bias2I,
                                   DNNmodel=R['model2sir'],
                                   activation=act_func2SIR,
                                   freqs=R['freqs'])
            RNN_temp = DNN.PDE_DNN(x=T_it,
                                   hiddenLayer=hidden_sir,
                                   Weigths=Weight2R,
                                   Biases=Bias2R,
                                   DNNmodel=R['model2sir'],
                                   activation=act_func2SIR,
                                   freqs=R['freqs'])
            in_beta = DNN.PDE_DNN(x=T_it,
                                  hiddenLayer=hidden_para,
                                  Weigths=Weight2beta,
                                  Biases=Bias2beta,
                                  DNNmodel=R['model2paras'],
                                  activation=act_func2paras,
                                  freqs=R['freqs'])
            in_gamma = DNN.PDE_DNN(x=T_it,
                                   hiddenLayer=hidden_para,
                                   Weigths=Weight2gamma,
                                   Biases=Bias2gamma,
                                   DNNmodel=R['model2paras'],
                                   activation=act_func2paras,
                                   freqs=R['freqs'])

            # Remark: beta, gamma,S_NN.I_NN,R_NN都应该是正的. beta.1--15之间,gamma在(0,1)使用归一化的话S_NN.I_NN,R_NN都在[0,1)范围内
            if (R['total_population']
                    == R['scale_population']) and R['scale_population'] != 1:
                beta = in_beta
                gamma = in_gamma
                # SNN = SNN_temp
                # INN = INN_temp
                # RNN = RNN_temp

                # SNN = tf.nn.relu(SNN_temp)
                # INN = tf.nn.relu(INN_temp)
                # RNN = tf.nn.relu(RNN_temp)

                # SNN = tf.abs(SNN_temp)
                # INN = tf.abs(INN_temp)
                # RNN = tf.abs(RNN_temp)

                # SNN = DNN_base.gauss(SNN_temp)
                # INN = tf.square(INN_temp)
                # RNN = tf.square(RNN_temp)

                # SNN = DNN_base.gauss(SNN_temp)
                # INN = tf.square(INN_temp)
                # RNN = tf.nn.sigmoid(RNN_temp)

                # SNN = DNN_base.gauss(SNN_temp)
                # INN = tf.nn.sigmoid(INN_temp)
                # RNN = tf.square(RNN_temp)

                # SNN = tf.sqrt(tf.square(SNN_temp))
                # INN = tf.sqrt(tf.square(INN_temp))
                # RNN = tf.sqrt(tf.square(RNN_temp))

                SNN = tf.nn.sigmoid(SNN_temp)
                INN = tf.nn.sigmoid(INN_temp)
                RNN = tf.nn.sigmoid(RNN_temp)

            else:
                beta = in_beta
                gamma = in_gamma

                # SNN = SNN_temp
                # INN = INN_temp
                # RNN = RNN_temp

                # SNN = tf.nn.relu(SNN_temp)
                # INN = tf.nn.relu(INN_temp)
                # RNN = tf.nn.relu(RNN_temp)

                SNN = tf.nn.sigmoid(SNN_temp)
                INN = tf.nn.sigmoid(INN_temp)
                RNN = tf.nn.sigmoid(RNN_temp)

            N_NN = SNN + INN + RNN

            dSNN2t = tf.gradients(SNN, T_it)[0]
            dINN2t = tf.gradients(INN, T_it)[0]
            dRNN2t = tf.gradients(RNN, T_it)[0]
            dN_NN2t = tf.gradients(N_NN, T_it)[0]

            temp_snn2t = -beta * SNN * INN
            temp_inn2t = beta * SNN * INN - gamma * INN
            temp_rnn2t = gamma * INN

            if str.lower(
                    R['loss_function']) == 'l2_loss' and R['scale_up'] == 0:
                # LossS_Net_obs = tf.reduce_mean(tf.square(SNN - S_observe))
                LossI_Net_obs = tf.reduce_mean(tf.square(INN - I_observe))
                # LossR_Net_obs = tf.reduce_mean(tf.square(RNN - R_observe))
                LossN_Net_obs = tf.reduce_mean(tf.square(N_NN - N_observe))

                Loss2dS = tf.reduce_mean(tf.square(dSNN2t - temp_snn2t))
                Loss2dI = tf.reduce_mean(tf.square(dINN2t - temp_inn2t))
                Loss2dR = tf.reduce_mean(tf.square(dRNN2t - temp_rnn2t))
                Loss2dN = tf.reduce_mean(tf.square(dN_NN2t))
            elif str.lower(
                    R['loss_function']) == 'l2_loss' and R['scale_up'] == 1:
                scale_up = R['scale_factor']
                # LossS_Net_obs = tf.reduce_mean(tf.square(scale_up*SNN - scale_up*S_observe))
                LossI_Net_obs = tf.reduce_mean(
                    tf.square(scale_up * INN - scale_up * I_observe))
                # LossR_Net_obs = tf.reduce_mean(tf.square(scale_up*RNN - scale_up*R_observe))
                LossN_Net_obs = tf.reduce_mean(
                    tf.square(scale_up * N_NN - scale_up * N_observe))

                Loss2dS = tf.reduce_mean(
                    tf.square(scale_up * dSNN2t - scale_up * temp_snn2t))
                Loss2dI = tf.reduce_mean(
                    tf.square(scale_up * dINN2t - scale_up * temp_inn2t))
                Loss2dR = tf.reduce_mean(
                    tf.square(scale_up * dRNN2t - scale_up * temp_rnn2t))
                Loss2dN = tf.reduce_mean(tf.square(scale_up * dN_NN2t))
            elif str.lower(R['loss_function']) == 'lncosh_loss':
                # LossS_Net_obs = tf.reduce_mean(tf.ln(tf.cosh(SNN - S_observe)))
                LossI_Net_obs = tf.reduce_mean(tf.log(tf.cosh(INN -
                                                              I_observe)))
                # LossR_Net_obs = tf.reduce_mean(tf.log(tf.cosh(RNN - R_observe)))
                LossN_Net_obs = tf.reduce_mean(
                    tf.log(tf.cosh(N_NN - N_observe)))

                Loss2dS = tf.reduce_mean(tf.log(tf.cosh(dSNN2t - temp_snn2t)))
                Loss2dI = tf.reduce_mean(tf.log(tf.cosh(dINN2t - temp_inn2t)))
                Loss2dR = tf.reduce_mean(tf.log(tf.cosh(dRNN2t - temp_rnn2t)))
                Loss2dN = tf.reduce_mean(tf.log(tf.cosh(dN_NN2t)))

            if R['regular_weight_model'] == 'L1':
                regular_WB2S = DNN_base.regular_weights_biases_L1(
                    Weight2S, Bias2S)
                regular_WB2I = DNN_base.regular_weights_biases_L1(
                    Weight2I, Bias2I)
                regular_WB2R = DNN_base.regular_weights_biases_L1(
                    Weight2R, Bias2R)
                regular_WB2Beta = DNN_base.regular_weights_biases_L1(
                    Weight2beta, Bias2beta)
                regular_WB2Gamma = DNN_base.regular_weights_biases_L1(
                    Weight2gamma, Bias2gamma)
            elif R['regular_weight_model'] == 'L2':
                regular_WB2S = DNN_base.regular_weights_biases_L2(
                    Weight2S, Bias2S)
                regular_WB2I = DNN_base.regular_weights_biases_L2(
                    Weight2I, Bias2I)
                regular_WB2R = DNN_base.regular_weights_biases_L2(
                    Weight2R, Bias2R)
                regular_WB2Beta = DNN_base.regular_weights_biases_L2(
                    Weight2beta, Bias2beta)
                regular_WB2Gamma = DNN_base.regular_weights_biases_L2(
                    Weight2gamma, Bias2gamma)
            else:
                regular_WB2S = tf.constant(0.0)
                regular_WB2I = tf.constant(0.0)
                regular_WB2R = tf.constant(0.0)
                regular_WB2Beta = tf.constant(0.0)
                regular_WB2Gamma = tf.constant(0.0)

            PWB2S = wb_penalty * regular_WB2S
            PWB2I = wb_penalty * regular_WB2I
            PWB2R = wb_penalty * regular_WB2R
            PWB2Beta = wb_penalty * regular_WB2Beta
            PWB2Gamma = wb_penalty * regular_WB2Gamma

            Loss2S = Loss2dS + PWB2S
            Loss2I = predict_true_penalty * LossI_Net_obs + Loss2dI + PWB2I
            Loss2R = Loss2dR + PWB2R
            Loss2N = predict_true_penalty * LossN_Net_obs + Loss2dN
            Loss = Loss2S + Loss2I + Loss2R + Loss2N + PWB2Beta + PWB2Gamma

            my_optimizer = tf.train.AdamOptimizer(in_learning_rate)
            if R['train_model'] == 'train_group':
                train_Loss2S = my_optimizer.minimize(Loss2S,
                                                     global_step=global_steps)
                train_Loss2I = my_optimizer.minimize(Loss2I,
                                                     global_step=global_steps)
                train_Loss2R = my_optimizer.minimize(Loss2R,
                                                     global_step=global_steps)
                train_Loss2N = my_optimizer.minimize(Loss2N,
                                                     global_step=global_steps)
                train_Loss = my_optimizer.minimize(Loss,
                                                   global_step=global_steps)
                train_Losses = tf.group(train_Loss2S, train_Loss2I,
                                        train_Loss2R, train_Loss2N, train_Loss)
            elif R['train_model'] == 'train_union_loss':
                train_Losses = my_optimizer.minimize(Loss,
                                                     global_step=global_steps)

    t0 = time.time()
    loss_s_all, loss_i_all, loss_r_all, loss_n_all, loss_all = [], [], [], [], []
    test_epoch = []
    test_mse2I_all, test_rel2I_all = [], []

    # filename = 'data2csv/Wuhan.csv'
    # filename = 'data2csv/Italia_data.csv'
    filename = 'data2csv/Korea_data.csv'
    date, data = DNN_data.load_csvData(filename)

    assert (trainSet_szie + batchSize_test <= len(data))
    train_date, train_data2i, test_date, test_data2i = \
        DNN_data.split_csvData2train_test(date, data, size2train=trainSet_szie, normalFactor=R['scale_population'])

    if R['scale_population'] == 1:
        nbatch2train = np.ones(batchSize_train, dtype=np.float32) * float(
            R['total_population'])
    elif (R['total_population'] !=
          R['scale_population']) and R['scale_population'] != 1:
        nbatch2train = np.ones(batchSize_train, dtype=np.float32) * (
            float(R['total_population']) / float(R['scale_population']))
    elif (R['total_population']
          == R['scale_population']) and R['scale_population'] != 1:
        nbatch2train = np.ones(batchSize_train, dtype=np.float32)

    # 对于时间数据来说,验证模型的合理性,要用连续的时间数据验证
    test_t_bach = DNN_data.sample_testDays_serially(test_date, batchSize_test)
    i_obs_test = DNN_data.sample_testData_serially(test_data2i,
                                                   batchSize_test,
                                                   normalFactor=1.0)
    print('The test data about i:\n', str(np.transpose(i_obs_test)))
    print('\n')
    DNN_tools.log_string(
        'The test data about i:\n%s\n' % str(np.transpose(i_obs_test)),
        log_fileout)

    # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了
    config = tf.ConfigProto(allow_soft_placement=True)  # 创建sess的时候对sess进行参数配置
    config.gpu_options.allow_growth = True  # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。
    config.allow_soft_placement = True  # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        tmp_lr = learning_rate
        for i_epoch in range(R['max_epoch'] + 1):
            t_batch, i_obs = \
                DNN_data.randSample_Normalize_existData(train_date, train_data2i, batchsize=batchSize_train,
                                                        normalFactor=1.0, sampling_opt=R['opt2sample'])
            n_obs = nbatch2train.reshape(batchSize_train, 1)
            tmp_lr = tmp_lr * (1 - lr_decay)
            train_option = True
            if R['activate_stage_penalty'] == 1:
                if i_epoch < int(R['max_epoch'] / 10):
                    temp_penalty_pt = pt_penalty_init
                elif i_epoch < int(R['max_epoch'] / 5):
                    temp_penalty_pt = 10 * pt_penalty_init
                elif i_epoch < int(R['max_epoch'] / 4):
                    temp_penalty_pt = 50 * pt_penalty_init
                elif i_epoch < int(R['max_epoch'] / 2):
                    temp_penalty_pt = 100 * pt_penalty_init
                elif i_epoch < int(3 * R['max_epoch'] / 4):
                    temp_penalty_pt = 200 * pt_penalty_init
                else:
                    temp_penalty_pt = 500 * pt_penalty_init
            elif R['activate_stage_penalty'] == 2:
                if i_epoch < int(R['max_epoch'] / 3):
                    temp_penalty_pt = pt_penalty_init
                elif i_epoch < 2 * int(R['max_epoch'] / 3):
                    temp_penalty_pt = 10 * pt_penalty_init
                else:
                    temp_penalty_pt = 50 * pt_penalty_init
            else:
                temp_penalty_pt = pt_penalty_init

            _, loss_s, loss_i, loss_r, loss_n, loss, pwb2s, pwb2i, pwb2r = sess.run(
                [
                    train_Losses, Loss2S, Loss2I, Loss2R, Loss2N, Loss, PWB2S,
                    PWB2I, PWB2R
                ],
                feed_dict={
                    T_it: t_batch,
                    I_observe: i_obs,
                    N_observe: n_obs,
                    in_learning_rate: tmp_lr,
                    train_opt: train_option,
                    predict_true_penalty: temp_penalty_pt
                })

            loss_s_all.append(loss_s)
            loss_i_all.append(loss_i)
            loss_r_all.append(loss_r)
            loss_n_all.append(loss_n)
            loss_all.append(loss)

            if i_epoch % 1000 == 0:
                # 以下代码为输出训练过程中 S_NN, I_NN, R_NN, beta, gamma 的训练结果
                DNN_LogPrint.print_and_log2train(i_epoch,
                                                 time.time() - t0,
                                                 tmp_lr,
                                                 temp_penalty_pt,
                                                 pwb2s,
                                                 pwb2i,
                                                 pwb2r,
                                                 loss_s,
                                                 loss_i,
                                                 loss_r,
                                                 loss_n,
                                                 loss,
                                                 log_out=log_fileout)

                s_nn2train, i_nn2train, r_nn2train = sess.run(
                    [SNN, INN, RNN],
                    feed_dict={T_it: np.reshape(train_date, [-1, 1])})

                # 以下代码为输出训练过程中 S_NN, I_NN, R_NN, beta, gamma 的测试结果
                test_epoch.append(i_epoch / 1000)
                train_option = False
                s_nn2test, i_nn2test, r_nn2test, beta_test, gamma_test = sess.run(
                    [SNN, INN, RNN, beta, gamma],
                    feed_dict={
                        T_it: test_t_bach,
                        train_opt: train_option
                    })
                point_ERR2I = np.square(i_nn2test - i_obs_test)
                test_mse2I = np.mean(point_ERR2I)
                test_mse2I_all.append(test_mse2I)
                test_rel2I = test_mse2I / np.mean(np.square(i_obs_test))
                test_rel2I_all.append(test_rel2I)

                DNN_tools.print_and_log_test_one_epoch(test_mse2I,
                                                       test_rel2I,
                                                       log_out=log_fileout)
                DNN_tools.log_string(
                    '------------------The epoch----------------------: %s\n' %
                    str(i_epoch), log2testSolus)
                DNN_tools.log_string(
                    'The test result for s:\n%s\n' %
                    str(np.transpose(s_nn2test)), log2testSolus)
                DNN_tools.log_string(
                    'The test result for i:\n%s\n' %
                    str(np.transpose(i_nn2test)), log2testSolus)
                DNN_tools.log_string(
                    'The test result for r:\n%s\n\n' %
                    str(np.transpose(r_nn2test)), log2testSolus)

                # --------以下代码为输出训练过程中 S_NN_temp, I_NN_temp, R_NN_temp, in_beta, in_gamma 的测试结果-------------
                s_nn_temp2test, i_nn_temp2test, r_nn_temp2test, in_beta_test, in_gamma_test = sess.run(
                    [SNN_temp, INN_temp, RNN_temp, in_beta, in_gamma],
                    feed_dict={
                        T_it: test_t_bach,
                        train_opt: train_option
                    })

                DNN_tools.log_string(
                    '------------------The epoch----------------------: %s\n' %
                    str(i_epoch), log2testSolus2)
                DNN_tools.log_string(
                    'The test result for s_temp:\n%s\n' %
                    str(np.transpose(s_nn_temp2test)), log2testSolus2)
                DNN_tools.log_string(
                    'The test result for i_temp:\n%s\n' %
                    str(np.transpose(i_nn_temp2test)), log2testSolus2)
                DNN_tools.log_string(
                    'The test result for r_temp:\n%s\n\n' %
                    str(np.transpose(r_nn_temp2test)), log2testSolus2)

                DNN_tools.log_string(
                    '------------------The epoch----------------------: %s\n' %
                    str(i_epoch), log2testParas)
                DNN_tools.log_string(
                    'The test result for in_beta:\n%s\n' %
                    str(np.transpose(in_beta_test)), log2testParas)
                DNN_tools.log_string(
                    'The test result for in_gamma:\n%s\n' %
                    str(np.transpose(in_gamma_test)), log2testParas)

        DNN_tools.log_string(
            'The train result for S:\n%s\n' % str(np.transpose(s_nn2train)),
            log2trianSolus)
        DNN_tools.log_string(
            'The train result for I:\n%s\n' % str(np.transpose(i_nn2train)),
            log2trianSolus)
        DNN_tools.log_string(
            'The train result for R:\n%s\n\n' % str(np.transpose(r_nn2train)),
            log2trianSolus)

        saveData.true_value2convid(train_data2i,
                                   name2Array='itrue2train',
                                   outPath=R['FolderName'])
        saveData.save_Solu2mat_Covid(s_nn2train,
                                     name2solus='s2train',
                                     outPath=R['FolderName'])
        saveData.save_Solu2mat_Covid(i_nn2train,
                                     name2solus='i2train',
                                     outPath=R['FolderName'])
        saveData.save_Solu2mat_Covid(r_nn2train,
                                     name2solus='r2train',
                                     outPath=R['FolderName'])

        saveData.save_SIR_trainLoss2mat_Covid(loss_s_all,
                                              loss_i_all,
                                              loss_r_all,
                                              loss_n_all,
                                              actName=act_func2SIR,
                                              outPath=R['FolderName'])

        plotData.plotTrain_loss_1act_func(loss_s_all,
                                          lossType='loss2s',
                                          seedNo=R['seed'],
                                          outPath=R['FolderName'],
                                          yaxis_scale=True)
        plotData.plotTrain_loss_1act_func(loss_i_all,
                                          lossType='loss2i',
                                          seedNo=R['seed'],
                                          outPath=R['FolderName'],
                                          yaxis_scale=True)
        plotData.plotTrain_loss_1act_func(loss_r_all,
                                          lossType='loss2r',
                                          seedNo=R['seed'],
                                          outPath=R['FolderName'],
                                          yaxis_scale=True)
        plotData.plotTrain_loss_1act_func(loss_n_all,
                                          lossType='loss2n',
                                          seedNo=R['seed'],
                                          outPath=R['FolderName'],
                                          yaxis_scale=True)

        saveData.true_value2convid(i_obs_test,
                                   name2Array='i_true2test',
                                   outPath=R['FolderName'])
        saveData.save_testMSE_REL2mat(test_mse2I_all,
                                      test_rel2I_all,
                                      actName='Infected',
                                      outPath=R['FolderName'])
        plotData.plotTest_MSE_REL(test_mse2I_all,
                                  test_rel2I_all,
                                  test_epoch,
                                  actName='Infected',
                                  seedNo=R['seed'],
                                  outPath=R['FolderName'],
                                  yaxis_scale=True)
        saveData.save_SIR_testSolus2mat_Covid(s_nn2test,
                                              i_nn2test,
                                              r_nn2test,
                                              name2solus1='snn2test',
                                              name2solus2='inn2test',
                                              name2solus3='rnn2test',
                                              outPath=R['FolderName'])
        saveData.save_SIR_testParas2mat_Covid(beta_test,
                                              gamma_test,
                                              name2para1='beta2test',
                                              name2para2='gamma2test',
                                              outPath=R['FolderName'])

        plotData.plot_testSolu2convid(i_obs_test,
                                      name2solu='i_true',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])
        plotData.plot_testSolu2convid(s_nn2test,
                                      name2solu='s_test',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])
        plotData.plot_testSolu2convid(i_nn2test,
                                      name2solu='i_test',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])
        plotData.plot_testSolu2convid(r_nn2test,
                                      name2solu='r_test',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])

        plotData.plot_testSolus2convid(i_obs_test,
                                       i_nn2test,
                                       name2solu1='i_true',
                                       name2solu2='i_test',
                                       coord_points2test=test_t_bach,
                                       seedNo=R['seed'],
                                       outPath=R['FolderName'])

        plotData.plot_testSolu2convid(beta_test,
                                      name2solu='beta_test',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])
        plotData.plot_testSolu2convid(gamma_test,
                                      name2solu='gamma_test',
                                      coord_points2test=test_t_bach,
                                      outPath=R['FolderName'])
Пример #7
0
def solve_Integral_Equa(R):
    log_out_path = R['FolderName']        # 将路径从字典 R 中提取出来
    if not os.path.exists(log_out_path):  # 判断路径是否已经存在
        os.mkdir(log_out_path)            # 无 log_out_path 路径,创建一个 log_out_path 路径
    outFile2para_name = '%s_%s.txt' % ('para2', 'beta')
    logfile_name = '%s%s.txt' % ('log2', R['activate_func'])
    log_fileout = open(os.path.join(log_out_path, logfile_name), 'w')       # 在这个路径下创建并打开一个可写的 log_train.txt文件
    para_outFile = open(os.path.join(log_out_path, outFile2para_name), 'w') # 在这个路径下创建并打开一个可写的 para_outFile.txt文件
    dictionary_out2file(R, log_fileout)

    # 积分方程问题需要的设置
    batchsize = R['batch_size2integral']
    batchsize2aux = R['batch_size2auxiliary']
    wb_regular = R['regular_weight_biases']
    lr_decay = R['learning_rate_decay']
    learning_rate = R['learning_rate']
    hidden_layers = R['hidden_layers']
    act_func = R['activate_func']

    # ------- set the problem ---------
    data_indim = R['input_dim']
    data_outdim = R['output_dim']
    para_dim = R['estimate_para_dim']

    # 初始化权重和和偏置的模式
    flag2bnn = 'bnn'
    input_dim = 1
    if R['model'] == 'PDE_DNN_Cos_C_Sin_Base':
        W2b, B2b = DNN_base.initialize_NN_random_normal2_CS(input_dim, para_dim, hidden_layers, flag2bnn)
    else:
        W2b, B2b = DNN_base.initialize_NN_random_normal2(input_dim, para_dim, hidden_layers, flag2bnn)

    global_steps = tf.Variable(0, trainable=False)
    with tf.device('/gpu:%s' % (R['gpuNo'])):
        with tf.variable_scope('vscope', reuse=tf.AUTO_REUSE):
            X = tf.placeholder(tf.float32, name='X_recv', shape=[batchsize, data_indim])
            Y = tf.placeholder(tf.float32, name='Y_recv', shape=[batchsize, data_indim])
            R2XY = tf.placeholder(tf.float32, name='R2XY_recv', shape=[batchsize, data_indim])
            y_aux = tf.placeholder(tf.float32, name='y_auxiliary', shape=[batchsize2aux, 1])
            beta = tf.Variable(tf.random.uniform([1, para_dim]), dtype='float32', name='beta')
            # beta = tf.Variable([[0.25, -0.5]], dtype='float32', name='beta')
            # beta = tf.constant([[0.25, -0.5]], dtype=tf.float32, name='beta')
            tfOne = tf.placeholder(tf.float32, shape=[1, 1], name='tfOne')
            inline_lr = tf.placeholder_with_default(input=1e-5, shape=[], name='inline_learning_rate')

            # 供选择的网络模式
            if R['model'] == str('DNN'):
                b_NN2y = DNN_base.PDE_DNN(y_aux, W2b, B2b, hidden_layers, activate_name=act_func)
                # b_NN2Y = DNN_base.PDE_DNN(Y, W2b, B2b, hidden_layers, activate_name=act_func)
            elif R['model'] == 'DNN_scale':
                freq = R['freqs']
                b_NN2y = DNN_base.PDE_DNN_scale(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                # b_NN2Y = DNN_base.PDE_DNN_scale(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func)
            elif R['model'] == 'DNN_adapt_scale':
                freq = R['freqs']
                b_NN2y = DNN_base.PDE_DNN_adapt_scale(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                # b_NN2Y = DNN_base.PDE_DNN_adapt_scale(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func)
            elif R['model'] == 'DNN_FourierBase':
                freq = R['freqs']
                b_NN2y = DNN_base.PDE_DNN_FourierBase(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                # b_NN2Y = DNN_base.PDE_DNN_FourierBase(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func)
            elif R['model'] == 'DNN_Cos_C_Sin_Base':
                freq = R['freqs']
                b_NN2y = DNN_base.PDE_DNN_Cos_C_Sin_Base(y_aux, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                # b_NN2Y = DNN_base.PDE_DNN_Cos_C_Sin_Base(Y, W2b, B2b, hidden_layers, freq, activate_name=act_func)

            # 下面怎么把循环改为向量操作呢?
            sum2bleft = tf.zeros(shape=[1, 1], dtype=tf.float32, name='01')
            sum2bright = tf.zeros(shape=[1, 1], dtype=tf.float32, name='02')
            # 使用循环将Xi取出来,然后带入方程计算b(·:beta),需要对i累加,最后取均值
            for i in range(batchsize):
                Xtemp = tf.reshape(X[i], shape=[1, 1])      # Xi取出
                OneX = tf.concat([tfOne, Xtemp], axis=-1)   # 1 行 (1+dim) 列
                XiTrans = tf.transpose(OneX, [1, 0])        # (1,Xi)

                fYX_y = my_normal(t=y_aux-tf.matmul(beta, XiTrans))      # fY|X在y处的取值,fY|X(y)
                dfYX_beta = tf.matmul(my_normal(t=y_aux-tf.matmul(beta, XiTrans))*(y_aux-tf.matmul(beta, XiTrans)), OneX)  # fY|X(y)对beta的导数

                # beta 是 1 行 para_dim 列
                fyx_1minus_phi_integral = tf.reduce_mean(fYX_y * (1 - pi_star(t=y_aux)), axis=0)  # fY|X(t)*(1-pi(t))的积分
                dfyx_phi_integral = tf.reduce_mean(dfYX_beta * pi_star(t=y_aux), axis=0)          # diff_fY|X(y)*pi(t)的积分
                ceof_vec2left = dfyx_phi_integral/fyx_1minus_phi_integral
                sum2bleft = sum2bleft + dfYX_beta + ceof_vec2left*fYX_y

                b_fyx_phi_integral = tf.reduce_mean(b_NN2y*fYX_y*pi_star(t=y_aux), axis=0)        # b(t, beta)*fY|X(t)*pi(t)的积分
                ceof_vec2right = b_fyx_phi_integral / fyx_1minus_phi_integral
                sum2bright = sum2bright + b_NN2y * fYX_y + ceof_vec2right * fYX_y

            bleft = sum2bleft / batchsize    # (1/N)sum{i=1:i=N(·)}
            bright = sum2bright / batchsize  # (1/N)sum{i=1:i=N(·)}

            loss2b = tf.reduce_mean(tf.reduce_mean(tf.square(bleft - bright), axis=0))

            sum2Seff = tf.zeros(shape=[1, 1], dtype=tf.float32, name='03')
            for i in range(batchsize):
                Xtemp = tf.reshape(X[i], shape=[1, 1])
                OneX = tf.concat([tfOne, Xtemp], axis=-1)  # 1 行 (1+dim) 列
                XiTrans = tf.transpose(OneX, [1, 0])

                fYX2y = my_normal(t=y_aux - tf.matmul(beta, XiTrans))   # fY|X在y处的取值,fY|X(y)
                Yi = tf.reshape(Y[i], shape=[1, 1])                     # Yi
                fYX2Y = my_normal(t=Yi-tf.matmul(beta, XiTrans))        # fY|X在Yi处的取值,fY|X(Yi)

                dfYX_beta2Y = tf.matmul(my_normal(t=Yi-tf.matmul(beta, XiTrans))*(Yi-tf.matmul(beta, XiTrans)), OneX)   # diff_fY|X(Yi)
                dfYX_beta2y = tf.matmul(my_normal(t=y_aux - tf.matmul(beta, XiTrans)) * (y_aux - tf.matmul(beta, XiTrans)), OneX)  # diff_fY|X(t)

                fyx_1minus_phi_integral = tf.reduce_mean(fYX2y * (1 - pi_star(t=y_aux)), axis=0)  # fY|X(t)*(1-pi(t))的积分
                dfyx_phi_integral = tf.reduce_mean(dfYX_beta2y * pi_star(t=y_aux), axis=0)        # diff_fY|X(y)*pi(t)的积分
                fyx_b_phi_integral = tf.reduce_mean(fYX2y * b_NN2y * pi_star(t=y_aux), axis=0)    # fY|X(t)*b(t, beta)*pi(t)的积分

                R2XY_i = tf.reshape(R2XY[i], shape=[1, -1])               # Ri
                Seff1 = (R2XY_i/fYX2Y) * dfYX_beta2Y - ((1-R2XY_i)/fyx_1minus_phi_integral) * dfyx_phi_integral  # S^*_beta

                if R['model'] == 'DNN':
                    b_NN2Yi = DNN_base.PDE_DNN(Yi, W2b, B2b, hidden_layers, activate_name=act_func)
                elif R['model'] == 'DNN_scale':
                    freq = R['freqs']
                    b_NN2Yi = DNN_base.PDE_DNN_scale(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                elif R['model'] == 'DNN_adapt_scale':
                    freq = R['freqs']
                    b_NN2Yi = DNN_base.PDE_DNN_adapt_scale(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                elif R['model'] == 'DNN_FourierBase':
                    freq = R['freqs']
                    b_NN2Yi = DNN_base.PDE_DNN_FourierBase(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func)
                elif R['model'] == 'DNN_Cos_C_Sin_Base':
                    freq = R['freqs']
                    b_NN2Yi = DNN_base.PDE_DNN_Cos_C_Sin_Base(Yi, W2b, B2b, hidden_layers, freq, activate_name=act_func)

                Seff2 = R2XY_i * tf.reshape(b_NN2Yi, shape=[1, -1])
                Seff3 = (1-R2XY_i) * (fyx_b_phi_integral/fyx_1minus_phi_integral)
                Seff = Seff1 - Seff2 + Seff3
                sum2Seff = sum2Seff + Seff

            loss2s_temp = sum2Seff/batchsize
            loss2Seff = tf.reduce_mean(tf.square(loss2s_temp))

            if R['regular_weight_model'] == 'L1':
                regular_WB2b = DNN_base.regular_weights_biases_L1(W2b, B2b)
            elif R['regular_weight_model'] == 'L2':
                regular_WB2b = DNN_base.regular_weights_biases_L2(W2b, B2b)
            else:
                regular_WB2b = tf.constant(0.0)

            penalty_WB = wb_regular * regular_WB2b
            loss = loss2b + loss2Seff + penalty_WB       # 要优化的loss function

            my_optimizer = tf.train.AdamOptimizer(inline_lr)
            if R['train_group'] == 0:
                train_my_loss = my_optimizer.minimize(loss, global_step=global_steps)
            if R['train_group'] == 1:
                train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps)
                train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps)
                train_op3 = my_optimizer.minimize(loss, global_step=global_steps)
                train_my_loss = tf.group(train_op1, train_op2, train_op3)
            elif R['train_group'] == 2:
                train_op1 = my_optimizer.minimize(loss2b, global_step=global_steps)
                train_op2 = my_optimizer.minimize(loss2Seff, global_step=global_steps)
                train_my_loss = tf.group(train_op1, train_op2)

    t0 = time.time()
    loss_b_all, loss_seff_all, loss_all = [], [], []  # 空列表, 使用 append() 添加元素

    # ConfigProto 加上allow_soft_placement=True就可以使用 gpu 了
    config = tf.ConfigProto(allow_soft_placement=True)  # 创建sess的时候对sess进行参数配置
    config.gpu_options.allow_growth = True              # True是让TensorFlow在运行过程中动态申请显存,避免过多的显存占用。
    config.allow_soft_placement = True                  # 当指定的设备不存在时,允许选择一个存在的设备运行。比如gpu不存在,自动降到cpu上运行

    x_batch = DNN_data.randnormal_mu_sigma(size=batchsize, mu=0.5, sigma=0.5)
    y_init = 0.25 - 0.5 * x_batch + np.reshape(np.random.randn(batchsize, 1), (-1, 1))
    y_aux_batch = DNN_data.rand_it(batch_size=batchsize2aux, variable_dim=data_indim, region_a=-2, region_b=2)
    # y_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.0, sigma=1.5)
    # x_aux_batch = DNN_data.randnormal_mu_sigma(size=batchsize2aux, mu=0.5, sigma=0.5)
    # y_aux_batch = 0.25 - 0.5 * x_aux_batch + np.reshape(np.random.randn(batchsize2aux, 1), (-1, 1))
    relate2XY = np.reshape(np.random.randint(0, 2, batchsize), (-1, 1))
    y_batch = np.multiply(y_init, relate2XY)
    one2train = np.ones((1, 1))

    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        tmp_lr = learning_rate
        for i_epoch in range(R['max_epoch'] + 1):
            tmp_lr = tmp_lr * (1 - lr_decay)
            _, loss2b_tmp, loss2seff_tmp, loss_tmp, p_WB, beta_temp = sess.run(
                [train_my_loss, loss2b, loss2Seff, loss, penalty_WB, beta],
                feed_dict={X: x_batch, Y: y_batch, R2XY: relate2XY, y_aux: y_aux_batch, tfOne: one2train,
                           inline_lr: tmp_lr})

            loss_b_all.append(loss2b_tmp)
            loss_seff_all.append(loss2seff_tmp)
            loss_all.append(loss_tmp)
            if (i_epoch % 10) == 0:
                DNN_tools.log_string('*************** epoch: %d*10 ****************' % int(i_epoch / 10), log_fileout)
                DNN_tools.log_string('lossb for training: %.10f\n' % loss2b_tmp, log_fileout)
                DNN_tools.log_string('lossS for training: %.10f\n' % loss2seff_tmp, log_fileout)
                DNN_tools.log_string('loss for training: %.10f\n' % loss_tmp, log_fileout)
            if (i_epoch % 100) == 0:
                print('**************** epoch: %d*100 *******************'% int(i_epoch/100))
                print('beta:[%f %f]' % (beta_temp[0, 0], beta_temp[0, 1]))
                print('\n')
                DNN_tools.log_string('*************** epoch: %d*100 *****************' % int(i_epoch/100), para_outFile)
                DNN_tools.log_string('beta:[%f, %f]' % (beta_temp[0, 0], beta_temp[0, 1]), para_outFile)
                DNN_tools.log_string('\n', para_outFile)

        saveData.save_trainLoss2mat_1actFunc(loss_b_all, loss_seff_all, loss_all, actName=act_func,
                                             outPath=R['FolderName'])
        plotData.plotTrain_loss_1act_func(loss_b_all, lossType='loss_b', seedNo=R['seed'], outPath=R['FolderName'],
                                          yaxis_scale=True)
        plotData.plotTrain_loss_1act_func(loss_seff_all, lossType='loss_s', seedNo=R['seed'], outPath=R['FolderName'],
                                          yaxis_scale=True)
        plotData.plotTrain_loss_1act_func(loss_all, lossType='loss_all', seedNo=R['seed'], outPath=R['FolderName'],
                                          yaxis_scale=True)
Пример #8
0
def dictionary_out2file(R_dic, log_fileout):
    DNN_tools.log_string('PDE type for problem: %s\n' % (R_dic['PDE_type']), log_fileout)
    DNN_tools.log_string('Equation name for problem: %s\n' % (R_dic['eqs_name']), log_fileout)

    if R_dic['activate_stop'] != 0:
        DNN_tools.log_string('activate the stop_step and given_step= %s\n' % str(R_dic['max_epoch']), log_fileout)
    else:
        DNN_tools.log_string('no activate the stop_step and given_step = default: %s\n' % str(R_dic['max_epoch']), log_fileout)

    DNN_tools.log_string('Network model of solving problem: %s\n' % str(R_dic['model']), log_fileout)
    DNN_tools.log_string('Activate function for network: %s\n' % str(R_dic['activate_func']), log_fileout)
    if R_dic['model'] != 'DNN':
        DNN_tools.log_string('The frequency to neural network: %s\n' % (R_dic['freqs']), log_fileout)

    if (R_dic['optimizer_name']).title() == 'Adam':
        DNN_tools.log_string('optimizer:%s\n' % str(R_dic['optimizer_name']), log_fileout)
    else:
        DNN_tools.log_string('optimizer:%s  with momentum=%f\n' % (R_dic['optimizer_name'], R_dic['momentum']), log_fileout)

    if R_dic['train_group'] == 0:
        DNN_tools.log_string('Training total loss \n', log_fileout)
    elif R_dic['train_group'] == 1:
        DNN_tools.log_string('Training total loss + parts loss \n', log_fileout)
    elif R_dic['train_group'] == 2:
        DNN_tools.log_string('Training parts loss \n', log_fileout)

    DNN_tools.log_string('Init learning rate: %s\n' % str(R_dic['learning_rate']), log_fileout)

    DNN_tools.log_string('Decay to learning rate: %s\n' % str(R_dic['learning_rate_decay']), log_fileout)

    DNN_tools.log_string('hidden layer:%s\n' % str(R_dic['hidden_layers']), log_fileout)

    DNN_tools.log_string('Batch-size 2 integral: %s\n' % str(R_dic['batch_size2integral']), log_fileout)
    DNN_tools.log_string('Batch-size 2 auxiliary: %s\n' % str(R_dic['batch_size2auxiliary']), log_fileout)
def dictionary_out2file(R_dic, log_fileout):
    # -----------------------------------------------------------------------------------------------------------------
    DNN_tools.log_string('PDE type for problem: %s\n' % (R_dic['PDE_type']),
                         log_fileout)
    DNN_tools.log_string(
        'Equation name for problem: %s\n' % (R_dic['equa_name']), log_fileout)
    if R_dic['input_dim'] == 1:
        if R_dic['PDE_type'] == 'pLaplace':
            DNN_tools.log_string(
                'The order of pLaplace operator: %s\n' %
                (R_dic['order2pLaplace_operator']), log_fileout)
            DNN_tools.log_string(
                'The epsilon to pLaplace operator: %f\n' % (R_dic['epsilon']),
                log_fileout)
        if R_dic['PDE_type'] == 'Possion_Boltzmann':
            DNN_tools.log_string(
                'The order of pLaplace operator: %s\n' %
                (R_dic['order2pLaplace_operator']), log_fileout)
            DNN_tools.log_string(
                'The epsilon to pLaplace operator: %f\n' % (R_dic['epsilon']),
                log_fileout)
    elif R_dic['input_dim'] == 2:
        if R_dic['PDE_type'] == 'pLaplace_implicit' or R_dic[
                'PDE_type'] == 'pLaplace_explicit':
            DNN_tools.log_string(
                'The order of pLaplace operator: %s\n' %
                (R_dic['order2pLaplace_operator']), log_fileout)
            DNN_tools.log_string(
                'The mesh_number: %f\n' % (R_dic['mesh_number']), log_fileout)
        elif R_dic['PDE_type'] == 'Possion_Boltzmann':
            DNN_tools.log_string(
                'The mesh_number: %f\n' % (R_dic['mesh_number']), log_fileout)
    else:
        DNN_tools.log_string(
            'The order of pLaplace operator: %s\n' %
            (R_dic['order2pLaplace_operator']), log_fileout)
        DNN_tools.log_string(
            'The epsilon to pLaplace operator: %f\n' % (R_dic['epsilon']),
            log_fileout)

    # -----------------------------------------------------------------------------------------------------------------
    DNN_tools.log_string(
        'Network model of solving problem: %s\n' % str(R_dic['model2NN']),
        log_fileout)
    if R_dic['model2NN'] == 'DNN_FourierBase' or R_dic[
            'model2NN'] == 'Fourier_DNN':
        DNN_tools.log_string(
            'Activate function for NN-input: %s\n' % '[Sin;Cos]', log_fileout)
    else:
        DNN_tools.log_string(
            'Activate function for NN-input: %s\n' % str(R_dic['name2act_in']),
            log_fileout)
    DNN_tools.log_string(
        'Activate function for NN-hidden: %s\n' %
        str(R_dic['name2act_hidden']), log_fileout)
    DNN_tools.log_string(
        'Activate function for NN-output: %s\n' % str(R_dic['name2act_out']),
        log_fileout)
    DNN_tools.log_string('hidden layer:%s\n' % str(R_dic['hidden_layers']),
                         log_fileout)
    if R_dic['model2NN'] != 'DNN':
        DNN_tools.log_string(
            'The frequency to neural network: %s\n' % (R_dic['freq']),
            log_fileout)

    if R_dic['model2NN'] == 'DNN_FourierBase' or R_dic[
            'model2NN'] == 'Fourier_DNN':
        DNN_tools.log_string(
            'The scale-factor to fourier basis: %s\n' % (R_dic['sfourier']),
            log_fileout)

    if R_dic['loss_type'] == 'variational_loss':
        DNN_tools.log_string('Loss function: variational loss\n', log_fileout)
    else:
        DNN_tools.log_string('Loss function: L2 loss\n', log_fileout)

    if (R_dic['train_model']) == 'union_training':
        DNN_tools.log_string(
            'The model for training loss: %s\n' % 'total loss', log_fileout)
    elif (R_dic['train_model']) == 'group3_training':
        DNN_tools.log_string(
            'The model for training loss: %s\n' %
            'total loss + loss_it + loss_bd', log_fileout)
    elif (R_dic['train_model']) == 'group2_training':
        DNN_tools.log_string(
            'The model for training loss: %s\n' % 'total loss + loss_bd',
            log_fileout)

    if (R_dic['optimizer_name']).title() == 'Adam':
        DNN_tools.log_string('optimizer:%s\n' % str(R_dic['optimizer_name']),
                             log_fileout)
    else:
        DNN_tools.log_string(
            'optimizer:%s  with momentum=%f\n' %
            (R_dic['optimizer_name'], R_dic['momentum']), log_fileout)

    DNN_tools.log_string(
        'Init learning rate: %s\n' % str(R_dic['learning_rate']), log_fileout)

    DNN_tools.log_string(
        'Decay to learning rate: %s\n' % str(R_dic['learning_rate_decay']),
        log_fileout)

    # -----------------------------------------------------------------------------------------------------------------
    DNN_tools.log_string(
        'Batch-size 2 interior: %s\n' % str(R_dic['batch_size2interior']),
        log_fileout)
    DNN_tools.log_string(
        'Batch-size 2 boundary: %s\n' % str(R_dic['batch_size2boundary']),
        log_fileout)

    DNN_tools.log_string(
        'Initial boundary penalty: %s\n' % str(R_dic['init_boundary_penalty']),
        log_fileout)
    if R_dic['activate_penalty2bd_increase'] == 1:
        DNN_tools.log_string(
            'The penalty of boundary will increase with training going on.\n',
            log_fileout)
    elif R_dic['activate_penalty2bd_increase'] == 2:
        DNN_tools.log_string(
            'The penalty of boundary will decrease with training going on.\n',
            log_fileout)
    else:
        DNN_tools.log_string(
            'The penalty of boundary will keep unchanged with training going on.\n',
            log_fileout)

    if R_dic['activate_stop'] != 0:
        DNN_tools.log_string(
            'activate the stop_step and given_step= %s\n' %
            str(R_dic['max_epoch']), log_fileout)
    else:
        DNN_tools.log_string(
            'no activate the stop_step and given_step = default: %s\n' %
            str(R_dic['max_epoch']), log_fileout)
def print_and_log_train_one_epoch(i_epoch,
                                  run_time,
                                  tmp_lr,
                                  temp_penalty_bd,
                                  pwb,
                                  loss_it_tmp,
                                  loss_bd_tmp,
                                  loss_tmp,
                                  train_mse_tmp,
                                  train_rel_tmp,
                                  log_out=None):
    # 将运行结果打印出来
    print('train epoch: %d, time: %.3f' % (i_epoch, run_time))
    print('learning rate: %f' % tmp_lr)
    print('boundary penalty: %f' % temp_penalty_bd)
    print('weights and biases with  penalty: %f' % pwb)
    print('loss_it for training: %.10f' % loss_it_tmp)
    print('loss_bd for training: %.10f' % loss_bd_tmp)
    print('loss for training: %.10f' % loss_tmp)
    print('solution mean square error for training: %.10f' % train_mse_tmp)
    print('solution residual error for training: %.10f\n' % train_rel_tmp)

    DNN_tools.log_string('train epoch: %d,time: %.3f' % (i_epoch, run_time),
                         log_out)
    DNN_tools.log_string('learning rate: %f' % tmp_lr, log_out)
    DNN_tools.log_string('boundary penalty: %f' % temp_penalty_bd, log_out)
    DNN_tools.log_string('weights and biases with  penalty: %f' % pwb, log_out)
    DNN_tools.log_string('loss_it for training: %.10f' % loss_it_tmp, log_out)
    DNN_tools.log_string('loss_bd for training: %.10f' % loss_bd_tmp, log_out)
    DNN_tools.log_string('loss for training: %.10f' % loss_tmp, log_out)
    DNN_tools.log_string(
        'solution mean square error for training: %.10f' % train_mse_tmp,
        log_out)
    DNN_tools.log_string(
        'solution residual error for training: %.10f\n' % train_rel_tmp,
        log_out)