# connection_rate_input_ec, perforant_path, mossy_fibers, # firing_rate_ec, firing_rate_dg, firing_rate_ca3, # _gamma, _epsilon, _nu, _turnover_rate, _k_m, _k_r, _a_i, _alpha): hpc = HPC([io_dim, 240, 1600, 480, io_dim], 0.67, 0.25, 0.04, # connection rates: (in_ec, ec_dg, dg_ca3) 0.10, 0.01, 0.04, # firing rates: (ec, dg, ca3) 0.7, 100.0, 0.1, turnover_rate, # gamma, epsilon, nu, turnover rate 0.10, 0.95, 0.8, 2.0, weighting_dg, # k_m, k_r, a_i, alpha. alpha is 2 in 4.1 _ASYNC_FLAG=_ASYNC_FLAG, _TURNOVER_MODE=_TURNOVER_MODE) # ============ LOW-LEVEL DEMO: ============ async, 0.50, tm 0, dg 25, local for i in range(1): for train_set_size_ctr in range(2, 3): hpc.reset_hpc_module() tar_patts = [] for p in training_patterns_associative[:5*train_set_size_ctr]: tar_patts.append(p[1]) ann = NeocorticalNetwork(io_dim, 30, io_dim, 0.01, 0.9) print "Starting experiment 4.2, HPC chaotic recall i iters and HPC pseudopatterns..." # This also saves the experiment results: Experiments_4_x.experiment_4_2_hpc_generate_output_images_for_every_learning_iteration( hpc, ann, train_set_size_ctr, training_patterns_associative[:2], train_iters=15, aggregate_start_ctr=0) Experiments_4_x.experiment_4_2_hpc_generate_output_images_for_every_learning_iteration( hpc, ann, train_set_size_ctr, training_patterns_associative[2:4], train_iters=15, aggregate_start_ctr=200) # For now, this is the ONLY place where the counter is incremented. Tools.increment_experiment_counter()
0.7, 100.0, 0.1, turnover_rate, # gamma, epsilon, nu, turnover rate 0.10, 0.95, 0.8, 2.0, weighting_dg, # k_m, k_r, a_i, alpha. alpha is 2 in 4.1 _ASYNC_FLAG=_ASYNC_FLAG, _TURNOVER_MODE=_TURNOVER_MODE) # ============ Config. X: ============ for i in range(1): for train_set_size_ctr in range(2, 3): hpc.reset_hpc_module() tar_patts = [] for p in training_patterns_associative[:5*train_set_size_ctr]: tar_patts.append(p[1]) ann = NeocorticalNetwork(io_dim, 30, io_dim, 0.01, 0.9) print "Starting experiment; HPC chaotic recall i iterations and HPC pseudopatterns..." # This also saves the experiment results: # relative frequency as in successful 2x5 goodness of fit. Experiments_4_x.experiment_4_2_hpc_recall_every_i_iters( hpc, train_set_size_ctr, training_patterns_associative[:5 * train_set_size_ctr], train_iters=15) # For now, this is the ONLY place where the counter is incremented. Tools.increment_experiment_counter() print "Performing memory consolidation.." # This is rather hard-coded for demo-purposes. NeocorticalMemoryConsolidation.iterate_over_experiments_suite_span_output_demo_local(Tools.get_experiment_counter()-1, Tools.get_experiment_counter()) print "Please see the saved_data/ folder for the associated experiment output."
0.10, 0.95, 0.8, 2.0, weighting_dg, # k_m, k_r, a_i, alpha. alpha is 2 in 4.1 _ASYNC_FLAG=_ASYNC_FLAG, _TURNOVER_MODE=_TURNOVER_MODE) # ============ Config. 1: ============ for i in range(6): for train_set_size_ctr in range(2, 6): hpc.reset_hpc_module() tar_patts = [] for p in training_patterns_associative[:5*train_set_size_ctr]: tar_patts.append(p[1]) print "Starting experiment 4.1, HPC chaotic recall i iters and HPC pseudopatterns..." # This also saves the experiment results: # relative frequency as in successful 2x5 goodness of fit. Experiments_4_x.experiment_4_2_hpc_recall_every_i_iters_global_exposure( hpc, train_set_size_ctr, training_patterns_associative[:5 * train_set_size_ctr], train_iters=15) # For now, this is the ONLY place where the counter is incremented. Tools.increment_experiment_counter() # ============ Config. 2: ============ for i in range(11): for train_set_size_ctr in range(2, 6): hpc.reset_hpc_module() tar_patts = [] for p in training_patterns_associative[:5*train_set_size_ctr]: tar_patts.append(p[1]) print "Starting experiment 4.1, HPC chaotic recall i iters and HPC pseudopatterns..." # This also saves the experiment results: