Пример #1
0
                       new_sampling_rate=sampling_rate_test, \
                       new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=m, new_training=False, use_adaptive_weights=DenoiserbyDenoiser)
LDAMP.ListNetworkParameters()

# tf Graph input
x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE])

#Create handles for the measurement operator
[A_handle, At_handle, A_val,
 A_val_tf] = LDAMP.GenerateMeasurementOperators(measurement_mode)

## Initialize the variable theta which stores the weights and biases
if tie_weights == True:
    theta = [None]
    with tf.variable_scope("Iter" + str(0)):
        theta_thisIter = LDAMP.init_vars_DnCNN(init_mu, init_sigma)
    theta[0] = theta_thisIter
elif DenoiserbyDenoiser:
    noise_min_stds = [
        0, 10, 20, 40, 60, 80, 100, 150, 300
    ]  #This is currently hardcoded within LearnedDAMP_functionhelper
    noise_max_stds = [
        10, 20, 40, 60, 80, 100, 150, 300, 500
    ]  # This is currently hardcoded within LearnedDAMP_functionhelper
    theta = [None] * len(noise_min_stds)
    for noise_level in range(len(noise_min_stds)):
        with tf.variable_scope("Adaptive_NL" + str(noise_level)):
            theta[noise_level] = LDAMP.init_vars_DnCNN(init_mu, init_sigma)
else:
    n_layers_trained = n_DAMP_layers
    theta = [None] * n_layers_trained
Пример #2
0
                       new_filter_height=filter_height, new_filter_width=filter_width, new_num_filters=num_filters, \
                       new_n_DnCNN_layers=n_DnCNN_layers, new_n_DAMP_layers=None,
                       new_sampling_rate=None, \
                       new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=None, new_n=n, new_m=None, new_training=True)
LDAMP.ListNetworkParameters()

# tf Graph input
training_tf = tf.placeholder(tf.bool, name='training')
sigma_w_tf = tf.placeholder(tf.float32)
x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE])

## Construct the measurement model and handles/placeholders
y_measured = LDAMP.AddNoise(x_true, sigma_w_tf)

## Initialize the variable theta which stores the weights and biases
theta_dncnn = LDAMP.init_vars_DnCNN(init_mu, init_sigma)

## Construct the reconstruction model
#x_hat = LDAMP.DnCNN(y_measured,None,theta_dncnn,training=training_tf)
[x_hat, div_overN] = LDAMP.DnCNN_wrapper(y_measured,
                                         None,
                                         theta_dncnn,
                                         training=training_tf)

## Define loss and optimizer

nfp = np.float32(height_img * width_img)
if useSURE:
    cost = LDAMP.MCSURE_loss(x_hat, div_overN, y_measured, sigma_w_tf)
else:
    cost = tf.nn.l2_loss(x_true - x_hat) * 1. / nfp
Пример #3
0
                           new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=m, new_training=True)
    LDAMP.ListNetworkParameters()

    # tf Graph input
    training_tf = tf.placeholder(tf.bool, name='training')
    x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE])

    ## Initialize the variable theta which stores the weights and biases
    if tie_weights == True:
        n_layers_trained = 1
    else:
        n_layers_trained = n_DAMP_layers
    theta = [None] * n_layers_trained
    for iter in range(n_layers_trained):
        with tf.variable_scope("Iter" + str(iter)):
            theta_thisIter = LDAMP.init_vars_DnCNN(init_mu, init_sigma)
        theta[iter] = theta_thisIter

    ## Construct the measurement model and handles/placeholders
    [A_handle, At_handle, A_val, A_val_tf] = LDAMP.GenerateMeasurementOperators(measurement_mode)
    y_measured = LDAMP.GenerateNoisyCSData_handles(x_true, A_handle, sigma_w, A_val_tf)

    ## Construct the reconstruction model
    if alg=='DAMP':
        (x_hat, MSE_history, NMSE_history, PSNR_history, r_final, rvar_final, div_overN) = LDAMP.LDAMP(y_measured,A_handle,At_handle,A_val_tf,theta,x_true,tie=tie_weights,training=training_tf,LayerbyLayer=LayerbyLayer)
    elif alg=='DIT':
        (x_hat, MSE_history, NMSE_history, PSNR_history) = LDAMP.LDIT(y_measured,A_handle,At_handle,A_val_tf,theta,x_true,tie=tie_weights,training=training_tf,LayerbyLayer=LayerbyLayer)
    else:
        raise ValueError('alg was not a supported option')

    ## Define loss and determine which variables to train