def foo(): m = 6 mm = 5 errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,3*(mm-1))) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) KappaSave = np.zeros((mm-1,1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' qq = -1 MU[0]= 1e0 kappa = 0.01 qq = -1 for yy in xrange(1,mm): kappa = kappa*10 KappaSave[yy-1] = kappa IterTypes = ['Full','MD','CD'] for kk in range(len(IterTypes)): qq += 1 for xx in xrange(1,m): print xx level[xx-1] = xx+ 2 nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn,nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order+1) Pressure = FunctionSpace(mesh, "CG", order) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity, Pressure, Magnetic,Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcb = DirichletBC(W.sub(2),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) Mu_m =1e1 MU = 1.0/1 IterType = IterTypes[kk] Split = "No" Saddle = "No" Stokes = "No" F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") Hiptmairtol = 1e-5 HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, Hiptmairtol, params) MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n") u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New", FS = "DG") #plot(p_k, interactive = True) b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) #print assemble(inner(b,c)*dx).array().shape #print mat #ShiftedMass = assemble(inner(mat*b,c)*dx) #as_vector([inner(b,c)[0]*b_k[0],inner(b,c)[1]*(-b_k[1])]) ones = Function(Pressure) ones.vector()[:]=(0*ones.vector().array()+1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx) x = Iter.u_prev(u_k,p_k,b_k,r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"DG",Saddle,Stokes) RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"DG",Saddle,Stokes) bcu = DirichletBC(Velocity,Expression(("0.0","0.0")), boundary) bcb = DirichletBC(Magnetic,Expression(("0.0","0.0")), boundary) bcr = DirichletBC(Lagrange,Expression(("0.0")), boundary) bcs = [bcu,bcb,bcr] parameters['linear_algebra_backend'] = 'uBLAS' SetupType = 'Matrix' BC = MHDsetup.BoundaryIndices(mesh) eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 40 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n") Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType) Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType) A = Fnlin+Alin A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType) u = b.duplicate() u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits =0 Mits =0 TotalStart =time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") AssembleTime = time.time() if IterType == "CD": MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time()-AssembleTime) b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "CD",IterType) else: MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n") # if iter == 1: # Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType) # Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType) # A = Fnlin+Alin # A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType) # u = b.duplicate() # else: # Fnline,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType) # A = Fnlin+Alin # A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType) AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) # if iter == 1: MO.StrTimePrint("MHD total assemble, time: ", time.time()-AssembleTime) u = b.duplicate() #A,Q kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() if u.norm()>1e50: iter = 10000 break stime = time.time() kspF = 0 u, mits,nsits = S.solve(A,b,u,params,W,'Direct',IterType,OuterTol,InnerTol,HiptmairMatrices,Hiptmairtol,KSPlinearfluids, Fp,kspF) Soltime = time.time()- stime Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter) p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) iterations[xx-1,qq] = iter dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()] # # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) # # # # # import pandas as pd # # # # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # # # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # import pandas as pd print iterations.shape[1] iter = ["P","MD","CD"] IterTitles = ["l","DoF"] for i in range(iterations.shape[1]/3): IterTitles += iter print IterTitles IterValues = np.concatenate((level,Wdim,iterations),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) print IterTable.to_latex() print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol print KappaSave # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
def foo(): m = 6 mm = 4 errL2u = np.zeros((m - 1, 1)) errH1u = np.zeros((m - 1, 1)) errL2p = np.zeros((m - 1, 1)) errL2b = np.zeros((m - 1, 1)) errCurlb = np.zeros((m - 1, 1)) errL2r = np.zeros((m - 1, 1)) errH1r = np.zeros((m - 1, 1)) l2uorder = np.zeros((m - 1, 1)) H1uorder = np.zeros((m - 1, 1)) l2porder = np.zeros((m - 1, 1)) l2border = np.zeros((m - 1, 1)) Curlborder = np.zeros((m - 1, 1)) l2rorder = np.zeros((m - 1, 1)) H1rorder = np.zeros((m - 1, 1)) NN = np.zeros((m - 1, 1)) DoF = np.zeros((m - 1, 1)) Velocitydim = np.zeros((m - 1, 1)) Magneticdim = np.zeros((m - 1, 1)) Pressuredim = np.zeros((m - 1, 1)) Lagrangedim = np.zeros((m - 1, 1)) Wdim = np.zeros((m - 1, 1)) iterations = np.zeros((m - 1, 1)) SolTime = np.zeros((m - 1, 1)) udiv = np.zeros((m - 1, 1)) MU = np.zeros((m - 1, 1)) level = np.zeros((m - 1, 1)) NSave = np.zeros((m - 1, 1)) Mave = np.zeros((m - 1, 1)) TotalTime = np.zeros((m - 1, 1)) kappaSave = np.zeros((1, 3 * (mm))) KappaIts = np.zeros((m - 1, 3 * (mm))) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0] = 1e0 ITERTYPE = ['Full', 'MD', 'CD'] kappa = 0.01 for xx in xrange(1, m): kk = 0 kappa = 0.01 for yy in xrange(1, mm + 1): kappa = kappa * 10 for jj in range(3): IterType = ITERTYPE[jj] print xx level[xx - 1] = xx + 2 nn = 2**(level[xx - 1]) # Create mesh and define function space nn = int(nn) NN[xx - 1] = nn / 2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn, nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order + 1) Pressure = FunctionSpace(mesh, "CG", order) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace( [Velocity, Pressure, Magnetic, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx - 1] = Velocity.dim() Pressuredim[xx - 1] = Pressure.dim() Magneticdim[xx - 1] = Magnetic.dim() Lagrangedim[xx - 1] = Lagrange.dim() Wdim[xx - 1] = W.dim() print "\n\nW: ", Wdim[xx - 1], "Velocity: ", Velocitydim[ xx - 1], "Pressure: ", Pressuredim[ xx - 1], "Magnetic: ", Magneticdim[ xx - 1], "Lagrange: ", Lagrangedim[xx - 1], "\n\n" dim = [ Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim() ] def boundary(x, on_boundary): return on_boundary u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D( 4, 1) bcu = DirichletBC(Velocity, u0, boundary) bcb = DirichletBC(Magnetic, b0, boundary) bcr = DirichletBC(Lagrange, r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu, bcb, bcr] FSpaces = [Velocity, Pressure, Magnetic, Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) Mu_m = 10.0 MU = 1.0 # IterType = 'Full' Split = "No" Saddle = "No" Stokes = "No" SetupType = 'Matrix' F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple if kappa == 0: F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple else: F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple params = [kappa, Mu_m, MU] MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n") BCtime = time.time() BC = MHDsetup.BoundaryIndices(FSpaces) MO.StrTimePrint("BC index function, time: ", time.time() - BCtime) Hiptmairtol = 1e-5 HiptmairMatrices = PrecondSetup.MagneticSetup( Magnetic, Lagrange, b0, r0, Hiptmairtol, params) print HiptmairMatrices MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n") u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0], [F_NS, F_M], params, HiptmairMatrices, 1e-10, Neumann=Expression( ("0", "0")), options="New") b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) ones = Function(Pressure) ones.vector()[:] = (0 * ones.vector().array() + 1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx) x = Iter.u_prev(u_k, p_k, b_k, r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup( Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D( mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "CG", Saddle, Stokes) RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params, "CG", Saddle, Stokes) bcu = DirichletBC(FSpaces[0], Expression(("0.0", "0.0")), boundary) bcb = DirichletBC(FSpaces[2], Expression(("0.0", "0.0")), boundary) bcr = DirichletBC(FSpaces[3], Expression(("0.0")), boundary) bcs = [bcu, bcb, bcr] parameters['linear_algebra_backend'] = 'uBLAS' eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 20 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] # if IterType == "CD": # MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n") # Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType) # Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType) # A = Fnlin+Alin # A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType) # u = b.duplicate() u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim())) M_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim(), W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits = 0 Mits = 0 TotalStart = time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n") AssembleTime = time.time() # if IterType == "CD": # MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time()-AssembleTime) # b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "CD",IterType) # else: MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") if Split == "Yes": if iter == 1: Fnlin, b, bc = MHDsetup.Assemble( W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) BC[0] = bc Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble( FSpaces, A, b, SetupType, IterType) u = b.duplicate() else: Fnline, b, bc = MHDsetup.Assemble( W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble( FSpaces, A, b, SetupType, IterType) else: AA, bb = assemble_system(maxwell + ns + CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A, b = CP.Assemble(AA, bb) # if iter == 1: MO.StrTimePrint("MHD total assemble, time: ", time.time() - AssembleTime) u = b.duplicate() kspFp, Fp = PrecondSetup.FluidNonLinearSetup( Pressure, MU, u_k) print "Inititial guess norm: ", u.norm( PETSc.NormType.NORM_INFINITY) #A,Q # if IterType == 'Full': # n = FacetNormal(mesh) # mat = as_matrix([[b_k[1]*b_k[1],-b_k[1]*b_k[0]],[-b_k[1]*b_k[0],b_k[0]*b_k[0]]]) # a = params[2]*inner(grad(b_t), grad(c_t))*dx(W.mesh()) + inner((grad(b_t)*u_k),c_t)*dx(W.mesh()) +(1./2)*div(u_k)*inner(c_t,b_t)*dx(W.mesh()) - (1./2)*inner(u_k,n)*inner(c_t,b_t)*ds(W.mesh())+kappa/Mu_m*inner(mat*b_t,c_t)*dx(W.mesh()) # ShiftedMass = assemble(a) # bcu.apply(ShiftedMass) # ShiftedMass = CP.Assemble(ShiftedMass) # kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass) # else: # F = A.getSubMatrix(u_is,u_is) # kspF = NSprecondSetup.LSCKSPnonlinear(F) stime = time.time() u, mits, nsits = S.solve(A, b, u, params, W, 'Direct', IterType, OuterTol, InnerTol, HiptmairMatrices, Hiptmairtol, KSPlinearfluids, Fp, 0) Soltime = time.time() - stime MO.StrTimePrint("MHD solve, time: ", Soltime) Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple( u, x, FSpaces, dim, "2", iter) if eps > 1e8 and iter > 2: iter = 0 break p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld = np.concatenate( (u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) print yy, jj print kk KappaIts[xx - 1, kk] = iter kappaSave[0, kk] = kappa kk += 1 # XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) # SolTime[xx-1] = SolutionTime/iter # NSave[xx-1] = (float(NSits)/iter) # Mave[xx-1] = (float(Mits)/iter) # iterations[xx-1] = iter # TotalTime[xx-1] = time.time() - TotalStart print kappaSave print KappaIts # dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()] # # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) # # # # # import pandas as pd # # # # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # # # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable import pandas as pd print "\n\n Iteration table" LatexTitles = ["l", "DoF"] for x in xrange(1, mm + 1): LatexTitles.extend(["Full", "MD", "CD"]) pd.set_option('precision', 3) LatexValues = np.concatenate((level, Wdim, KappaIts), axis=1) title = np.concatenate((np.array([[0, 0]]), kappaSave), axis=1) MU = ["0", "0"] for x in xrange(1, mm + 1): MU.extend(["Full", "MD", "CD"]) LatexValues = np.vstack((title, LatexValues)) LatexTable = pd.DataFrame(LatexValues, columns=LatexTitles) # name = "Output/"+IterType+"mutest" # LatexTable.to_csv(name) print LatexTable.to_latex() tableName = "2d_nu=" + str(MU) + "_nu_m=" + str(Mu_m) + "_kappa=" + str( kappa) + ".tex" IterTable.to_latex(tableName) # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
def foo(): m = 4 errL2u = np.zeros((m - 1, 1)) errH1u = np.zeros((m - 1, 1)) errL2p = np.zeros((m - 1, 1)) errL2b = np.zeros((m - 1, 1)) errCurlb = np.zeros((m - 1, 1)) errL2r = np.zeros((m - 1, 1)) errH1r = np.zeros((m - 1, 1)) l2uorder = np.zeros((m - 1, 1)) H1uorder = np.zeros((m - 1, 1)) l2porder = np.zeros((m - 1, 1)) l2border = np.zeros((m - 1, 1)) Curlborder = np.zeros((m - 1, 1)) l2rorder = np.zeros((m - 1, 1)) H1rorder = np.zeros((m - 1, 1)) NN = np.zeros((m - 1, 1)) DoF = np.zeros((m - 1, 1)) Velocitydim = np.zeros((m - 1, 1)) Magneticdim = np.zeros((m - 1, 1)) Pressuredim = np.zeros((m - 1, 1)) Lagrangedim = np.zeros((m - 1, 1)) Wdim = np.zeros((m - 1, 1)) iterations = np.zeros((m - 1, 1)) SolTime = np.zeros((m - 1, 1)) udiv = np.zeros((m - 1, 1)) MU = np.zeros((m - 1, 1)) level = np.zeros((m - 1, 1)) NSave = np.zeros((m - 1, 1)) Mave = np.zeros((m - 1, 1)) TotalTime = np.zeros((m - 1, 1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0] = 1e0 for xx in xrange(1, m): print xx level[xx - 1] = xx + 0 nn = 2**(level[xx - 1]) # Create mesh and define function space nn = int(nn) NN[xx - 1] = nn / 2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn, nn) order = 2 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "CG", order - 1) Magnetic = FunctionSpace(mesh, "N1curl", order - 1) Lagrange = FunctionSpace(mesh, "CG", order - 1) W = MixedFunctionSpace([Velocity, Pressure, Magnetic, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx - 1] = Velocity.dim() Pressuredim[xx - 1] = Pressure.dim() Magneticdim[xx - 1] = Magnetic.dim() Lagrangedim[xx - 1] = Lagrange.dim() Wdim[xx - 1] = W.dim() print "\n\nW: ", Wdim[xx - 1], "Velocity: ", Velocitydim[ xx - 1], "Pressure: ", Pressuredim[xx - 1], "Magnetic: ", Magneticdim[ xx - 1], "Lagrange: ", Lagrangedim[xx - 1], "\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D( 4, 1, mesh) bcu = DirichletBC(Velocity, u0, boundary) bcb = DirichletBC(Magnetic, b0, boundary) bcr = DirichletBC(Lagrange, r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu, bcb, bcr] FSpaces = [Velocity, Pressure, Magnetic, Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) kappa = 10.0 Mu_m = 10.0 MU = 1.0 / 1 IterType = 'Full' Split = "No" Saddle = "No" Stokes = "No" SetupType = 'python-class' F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple if kappa == 0: F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple else: F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple params = [kappa, Mu_m, MU] MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n") BCtime = time.time() BC = MHDsetup.BoundaryIndices(mesh) MO.StrTimePrint("BC index function, time: ", time.time() - BCtime) Hiptmairtol = 1e-6 HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, Hiptmairtol, params) MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n") u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0], [F_NS, F_M], params, HiptmairMatrices, 1e-10, Neumann=Expression( ("0", "0")), options="New") b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) ones = Function(Pressure) ones.vector()[:] = (0 * ones.vector().array() + 1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx) x = Iter.u_prev(u_k, p_k, b_k, r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup( Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D( mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "CG", Saddle, Stokes) RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params, "CG", Saddle, Stokes) bcu = DirichletBC(W.sub(0), Expression(("0.0", "0.0")), boundary) bcb = DirichletBC(W.sub(2), Expression(("0.0", "0.0")), boundary) bcr = DirichletBC(W.sub(3), Expression(("0.0")), boundary) bcs = [bcu, bcb, bcr] parameters['linear_algebra_backend'] = 'uBLAS' eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 10 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) u = b.duplicate() u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim() + Pressure.dim())) M_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim(), W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits = 0 Mits = 0 TotalStart = time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n") AssembleTime = time.time() if IterType == "CD": MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time() - AssembleTime) b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "CD", IterType) else: MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") if Split == "Yes": if iter == 1: Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) u = b.duplicate() else: Fnline, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) else: AA, bb = assemble_system(maxwell + ns + CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A, b = CP.Assemble(AA, bb) # if iter == 1: MO.StrTimePrint("MHD total assemble, time: ", time.time() - AssembleTime) u = b.duplicate() kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm( PETSc.NormType.NORM_INFINITY) #A,Q if IterType == 'Full': n = FacetNormal(mesh) mat = as_matrix([[b_k[1] * b_k[1], -b_k[1] * b_k[0]], [-b_k[1] * b_k[0], b_k[0] * b_k[0]]]) a = params[2] * inner(grad(b_t), grad(c_t)) * dx( W.mesh()) + inner((grad(b_t) * u_k), c_t) * dx(W.mesh( )) + (1. / 2) * div(u_k) * inner(c_t, b_t) * dx( W.mesh()) - (1. / 2) * inner(u_k, n) * inner( c_t, b_t) * ds(W.mesh()) + kappa / Mu_m * inner( mat * b_t, c_t) * dx(W.mesh()) ShiftedMass = assemble(a) bcu.apply(ShiftedMass) ShiftedMass = CP.Assemble(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass) else: F = A.getSubMatrix(u_is, u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) aVec, L_M, L_NS, Bt, CoupleT = forms.MHDmatvec(mesh, W, Laplacian, Laplacian, u_k, b_k, u, b, p, r, params, "Full", "CG", SaddlePoint="No") bcu = DirichletBC(Velocity, u0, boundary) PrecondTmult = {'Bt': Bt, 'Ct': CoupleT, 'BC': bcu} FS = { 'velocity': Velocity, 'pressure': Pressure, 'magnetic': Magnetic, 'multiplier': Lagrange } P = PETSc.Mat().createPython([W.dim(), W.dim()]) P.setType('python') aa = MHDmulti.PetscMatVec(FS, aVec, bcs, PrecondTmult) P.setPythonContext(aa) P.setUp() stime = time.time() u, mits, nsits = S.solve(A, P, b, u, params, W, 'Directsss', IterType, OuterTol, InnerTol, HiptmairMatrices, Hiptmairtol, KSPlinearfluids, Fp, kspF) Soltime = time.time() - stime MO.StrTimePrint("MHD solve, time: ", Soltime) Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple( u, x, FSpaces, dim, "2", iter) p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld = np.concatenate((u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) XX = np.concatenate((u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) SolTime[xx - 1] = SolutionTime / iter NSave[xx - 1] = (float(NSits) / iter) Mave[xx - 1] = (float(Mits) / iter) iterations[xx - 1] = iter TotalTime[xx - 1] = time.time() - TotalStart # dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()] # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) # import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # print "\n\n Lagrange convergence" # LagrangeTitles = ["l","B DoF","R DoF","R-L2","L2-order","R-H1","H1-order"] # LagrangeValues = np.concatenate((level,Lagrangedim,Lagrangedim,errL2r,l2rorder,errH1r,H1rorder),axis=1) # LagrangeTable= pd.DataFrame(LagrangeValues, columns = LagrangeTitles) # pd.set_option('precision',3) # LagrangeTable = MO.PandasFormat(LagrangeTable,"R-L2","%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,'R-H1',"%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,"L2-order","%1.2f") # LagrangeTable = MO.PandasFormat(LagrangeTable,'H1-order',"%1.2f") # print LagrangeTable import pandas as pd print "\n\n Iteration table" if IterType == "Full": IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av Outer its", "Av Inner its", ] else: IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av NS iters", "Av M iters" ] IterValues = np.concatenate( (level, Wdim, SolTime, TotalTime, iterations, Mave, NSave), axis=1) IterTable = pd.DataFrame(IterValues, columns=IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable, 'Av Outer its', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av Inner its', "%2.1f") else: IterTable = MO.PandasFormat(IterTable, 'Av NS iters', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av M iters', "%2.1f") print IterTable print " \n Outer Tol: ", OuterTol, "Inner Tol: ", InnerTol # tableName = "2d_nu="+str(MU)+"_nu_m="+str(Mu_m)+"_kappa="+str(kappa)+"_l="+str(np.min(level))+"-"+str(np.max(level))+".tex" # IterTable.to_latex(tableName) # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
parameters['linear_algebra_backend'] = 'uBLAS' eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 20 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) u = b.duplicate() u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim() + Pressure.dim())) M_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim(), W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits = 0 Mits = 0 TotalStart = time.time()