Пример #1
0
    def physics_options(self, input_file, step):
        "Options corresponding to modeling choices."
        config_filename = self.config(step)

        options = [
            "-energy none",  # isothermal setup; allows selecting cold-mode flow laws
            "-ssa_flow_law isothermal_glen",  # isothermal setup
            "-yield_stress constant",
            "-tauc %e" % MISMIP.C(self.experiment),
            "-pseudo_plastic",
            "-gradient eta",
            "-pseudo_plastic_q %e" % MISMIP.m(self.experiment),
            "-pseudo_plastic_uthreshold %e" % MISMIP.secpera(),
            "-calving ocean_kill",  # calving at the present front
            "-ocean_kill_file %s" % input_file,
            "-config_override %s" % config_filename,
            "-ssa_method fd",
            "-cfbc",  # calving front boundary conditions
            "-part_grid",  # sub-grid front motion parameterization
            "-ssafd_ksp_rtol 1e-7",
            "-ys 0",
            "-ye %d" % MISMIP.run_length(self.experiment, step),
            "-options_left",
        ]

        if self.model == 1:
            options.extend(["-stress_balance ssa"])
        else:
            options.extend([
                "-stress_balance ssa+sia",
                "-sia_flow_law isothermal_glen",  # isothermal setup
            ])

        return options
Пример #2
0
def plot_flux(in_file, out_file):
    print(
        "Reading %s to plot ice flux for model %s, experiment %s, grid mode %s, step %s"
        % (in_file, model, experiment, mode, step))

    if out_file is None:
        out_file = os.path.splitext(in_file)[0] + "-flux.pdf"

    x = read(in_file, 'x')
    flux_mag = read(in_file, 'flux_mag')

    # plot positive xs only
    flux_mag = flux_mag[x >= 0]
    x = x[x >= 0]

    figure(2)
    hold(True)

    plot(x / 1e3, flux_mag, 'k.-', markersize=10, linewidth=2)
    plot(x / 1e3, x * MISMIP.a() * MISMIP.secpera(), 'r:', linewidth=1.5)

    title("MISMIP experiment %s, step %d" % (experiment, step))
    xlabel("x ($\mathrm{km}$)", size=14)
    ylabel(r"flux ($\mathrm{m}^2\,\mathrm{a}^{-1}$)", size=14)

    print("Saving '%s'...\n" % out_file)
    savefig(out_file, dpi=300, facecolor='w', edgecolor='w')
Пример #3
0
    def physics_options(self, input_file, step):
        "Options corresponding to modeling choices."
        config_filename = self.config(step)

        options = ["-energy none",  # isothermal setup; allows selecting cold-mode flow laws
                   "-ssa_flow_law isothermal_glen",  # isothermal setup
                   "-yield_stress constant",
                   "-tauc %e" % MISMIP.C(self.experiment),
                   "-pseudo_plastic",
                   "-gradient eta",
                   "-pseudo_plastic_q %e" % MISMIP.m(self.experiment),
                   "-pseudo_plastic_uthreshold %e" % MISMIP.secpera(),
                   "-calving ocean_kill",  # calving at the present front
                   "-ocean_kill_file %s" % input_file,
                   "-config_override %s" % config_filename,
                   "-ssa_method fd",
                   "-cfbc",                # calving front boundary conditions
                   "-part_grid",           # sub-grid front motion parameterization
                   "-ssafd_ksp_rtol 1e-7",
                   "-ys 0",
                   "-ye %d" % MISMIP.run_length(self.experiment, step),
                   "-options_left",
                   ]

        if self.model == 1:
            options.extend(["-stress_balance ssa"])
        else:
            options.extend(["-stress_balance ssa+sia",
                            "-sia_flow_law isothermal_glen",  # isothermal setup
                            ])

        return options
Пример #4
0
Файл: plot.py Проект: pism/pism
def plot_flux(in_file, out_file):
    print("Reading %s to plot ice flux for model %s, experiment %s, grid mode %s, step %s" % (
        in_file, model, experiment, mode, step))

    if out_file is None:
        out_file = os.path.splitext(in_file)[0] + "-flux.pdf"

    x = read(in_file, 'x')
    flux_mag = read(in_file, 'flux_mag')

    # plot positive xs only
    flux_mag = flux_mag[x >= 0]
    x = x[x >= 0]

    figure(2)
    hold(True)

    plot(x / 1e3, flux_mag, 'k.-', markersize=10, linewidth=2)
    plot(x / 1e3, x * MISMIP.a() * MISMIP.secpera(), 'r:', linewidth=1.5)

    title("MISMIP experiment %s, step %d" % (experiment, step))
    xlabel("x ($\mathrm{km}$)", size=14)
    ylabel(r"flux ($\mathrm{m}^2\,\mathrm{a}^{-1}$)", size=14)

    print("Saving '%s'...\n" % out_file)
    savefig(out_file, dpi=300, facecolor='w', edgecolor='w')
Пример #5
0
    def physics_options(self, step):
        "Options corresponding to modeling choices."
        config_filename = self.config(step)

        options = [
            "-cold",  # allow selecting cold-mode flow laws
            "-sia_flow_law isothermal_glen",  # isothermal setup
            "-ssa_flow_law isothermal_glen",  # isothermal setup
            "-no_energy",  # isothermal setup
            "-ssa_sliding",  # use SSA
            "-hold_tauc",
            "-tauc %e" % MISMIP.C(self.experiment),
            "-pseudo_plastic",
            "-gradient eta",
            "-pseudo_plastic_q %e" % MISMIP.m(self.experiment),
            "-pseudo_plastic_uthreshold %e" % MISMIP.secpera(),
            "-ocean_kill",  # calving at the present front
            "-config_override %s" % config_filename,
            "-ssa_method fd",  # use the FD solver that includes PIK improvements
            "-cfbc",  # calving front boundary conditions
            "-part_grid",  # sub-grid front motion parameterization
            "-ksp_rtol 1e-7",
            "-ys 0",
            "-ye %f" % MISMIP.run_length(self.experiment, step),
            "-options_left",
        ]

        if self.model == 1:
            options.extend(["-no_sia"])
        else:
            options.extend(["-sia"])

        if self.mode in (2, 3):
            options.extend(["-skip", "-skip_max 10"])

        return options
Пример #6
0
def pism_bootstrap_file(filename,
                        step,
                        v0,
                        H0,
                        calving_front=1750e3,
                        N=None,
                        p="default"):
    import PISMNC

    xx = x(N)
    yy = y(xx)

    print("dx", xx[1] - xx[0])

    v0 = v0 / MISMIP.secpera()
    #H0 = 800.0
    Q0 = H0 * v0

    topg = bed_topography(xx)
    thk = thickness(xx, step, Q0, H0, calving_front, p)
    smb = surface_mass_balance(xx)
    temp = ice_surface_temp(xx)

    vel = Q0 / np.maximum(thk, eps) * MISMIP.secpera()
    vel[thk == 0.0] = 0.0

    #vel = np.nan_to_num(Q0/thk)*MISMIP.secpera()
    bcm = bcmask(xx)
    vel0 = np.zeros_like(vel)
    okill = ocean_kill(thk)

    nc = PISMNC.PISMDataset(filename, 'w', format="NETCDF3_CLASSIC")

    nc.create_dimensions(xx, yy)

    nc.define_2d_field('topg',
                       attrs={
                           'units': 'm',
                           'long_name': 'bedrock surface elevation',
                           'standard_name': 'bedrock_altitude'
                       })
    nc.write('topg', topg)

    nc.define_2d_field('thk',
                       attrs={
                           'units': 'm',
                           'long_name': 'ice thickness',
                           'standard_name': 'land_ice_thickness'
                       })
    nc.write('thk', thk)

    nc.define_2d_field(
        'climatic_mass_balance',
        attrs={
            'units': 'kg m-2 / s',
            'long_name':
            'ice-equivalent surface mass balance (accumulation/ablation) rate',
            'standard_name': 'land_ice_surface_specific_mass_balance_flux'
        })
    nc.write('climatic_mass_balance', smb)

    nc.define_2d_field(
        'ice_surface_temp',
        attrs={
            'units':
            'Kelvin',
            'long_name':
            'annual average ice surface temperature, below firn processes'
        })
    nc.write('ice_surface_temp', temp)

    nc.define_2d_field('land_ice_area_fraction_retreat',
                       attrs={
                           'units': '',
                           'long_name': 'mask where -ocean_kill cuts off ice'
                       })
    nc.write('land_ice_area_fraction_retreat', okill)

    nc.define_2d_field('u_ssa_bc', attrs={'units': 'm/yr'})
    nc.write('u_ssa_bc', vel)

    nc.define_2d_field('v_ssa_bc', attrs={'units': 'm/yr'})
    nc.write('v_ssa_bc', vel0)

    nc.define_2d_field('bc_mask', attrs={})
    nc.write('bc_mask', bcm)

    nc.close()