def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "

        Mx1 = ((self.x2 - self.x1) + (self.x3 - self.x1) +
               (self.x4 - self.x1) + (self.x5 - self.x1) +
               (self.x6 - self.x1)) / 5  # 1x1
        My1 = ((self.y2 - self.y1) + (self.y3 - self.y1) +
               (self.y4 - self.y1) + (self.y5 - self.y1) +
               (self.y6 - self.y1)) / 5  # 1x1

        Mx2 = ((self.x1 - self.x2) + (self.x3 - self.x2) +
               (self.x4 - self.x2) + (self.x5 - self.x2) +
               (self.x6 - self.x2)) / 5  # 1x1
        My2 = ((self.y1 - self.y2) + (self.y3 - self.y2) +
               (self.y4 - self.y2) + (self.y5 - self.y2) +
               (self.y6 - self.y2)) / 5  # 1x1

        Mx3 = ((self.x1 - self.x3) + (self.x2 - self.x3) +
               (self.x4 - self.x3) + (self.x5 - self.x3) +
               (self.x6 - self.x3)) / 5  # 1x1
        My3 = ((self.y1 - self.y3) + (self.y2 - self.y3) +
               (self.y4 - self.y3) + (self.y5 - self.y3) +
               (self.y6 - self.y3)) / 5  # 1x1

        Mx4 = ((self.x1 - self.x4) + (self.x2 - self.x4) +
               (self.x3 - self.x4) + (self.x5 - self.x4) +
               (self.x6 - self.x4)) / 5  # 1x1
        My4 = ((self.y1 - self.y4) + (self.y2 - self.y4) +
               (self.y3 - self.y4) + (self.y5 - self.y4) +
               (self.y6 - self.y4)) / 5  # 1x1

        Mx5 = ((self.x1 - self.x5) + (self.x2 - self.x5) +
               (self.x3 - self.x5) + (self.x4 - self.x5) +
               (self.x6 - self.x5)) / 5  # 1x1
        My5 = ((self.y1 - self.y5) + (self.y2 - self.y5) +
               (self.y3 - self.y5) + (self.y4 - self.y5) +
               (self.y6 - self.y5)) / 5  # 1x1

        Mx6 = ((self.x1 - self.x6) + (self.x2 - self.x6) +
               (self.x3 - self.x6) + (self.x4 - self.x6) +
               (self.x5 - self.x6)) / 5  # 1x1
        My6 = ((self.y1 - self.y6) + (self.y2 - self.y6) +
               (self.y3 - self.y6) + (self.y4 - self.y6) +
               (self.y5 - self.y6)) / 5  # 1x1

        " Use MLP to Predict control inputs "

        relative_pose_1 = [Mx1, My1]  # tensor data for MLP model
        relative_pose_2 = [Mx2, My2]  # tensor data for MLP model
        relative_pose_3 = [Mx3, My3]  # tensor data for MLP model
        relative_pose_4 = [Mx4, My4]  # tensor data for MLP model
        relative_pose_5 = [Mx5, My5]  # tensor data for MLP model
        relative_pose_6 = [Mx6, My6]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1, loaded_model)  # predict control input u1, tensor
        u2_predicted = MLP_Model.predict(
            relative_pose_2, loaded_model)  # predict control input u2, tensor
        u3_predicted = MLP_Model.predict(
            relative_pose_3, loaded_model)  # predict control input u3, tensor
        u4_predicted = MLP_Model.predict(
            relative_pose_4, loaded_model)  # predict control input u4, tensor
        u5_predicted = MLP_Model.predict(
            relative_pose_5, loaded_model)  # predict control input u5, tensor
        u6_predicted = MLP_Model.predict(
            relative_pose_6, loaded_model)  # predict control input u6, tensor

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[u2_predicted[0][0]], [
            u2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u3_predicted_np = np.array([[u3_predicted[0][0]], [
            u3_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u4_predicted_np = np.array([[u4_predicted[0][0]], [
            u4_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u5_predicted_np = np.array([[u5_predicted[0][0]], [
            u5_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u6_predicted_np = np.array([[u6_predicted[0][0]], [
            u6_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S2 = np.array([[self.v2], [self.w2]])  #2x1
        G2 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np)  # 2x1

        S3 = np.array([[self.v3], [self.w3]])  #2x1
        G3 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R3 = np.array([[math.cos(self.Theta3),
                        math.sin(self.Theta3)],
                       [-math.sin(self.Theta3),
                        math.cos(self.Theta3)]])  #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np)  #2x1

        S4 = np.array([[self.v4], [self.w4]])  #2x1
        G4 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R4 = np.array([[math.cos(self.Theta4),
                        math.sin(self.Theta4)],
                       [-math.sin(self.Theta4),
                        math.cos(self.Theta4)]])  #2x2
        S4 = np.dot(np.dot(G4, R4), u4_predicted_np)  #2x1

        S5 = np.array([[self.v5], [self.w5]])  #2x1
        G5 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R5 = np.array([[math.cos(self.Theta5),
                        math.sin(self.Theta5)],
                       [-math.sin(self.Theta5),
                        math.cos(self.Theta5)]])  #2x2
        S5 = np.dot(np.dot(G5, R5), u5_predicted_np)  #2x1

        S6 = np.array([[self.v6], [self.w6]])  #2x1
        G6 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R6 = np.array([[math.cos(self.Theta6),
                        math.sin(self.Theta6)],
                       [-math.sin(self.Theta6),
                        math.cos(self.Theta6)]])  #2x2
        S6 = np.dot(np.dot(G6, R6), u6_predicted_np)  #2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2],
                             [self.vR2]])  # Vector 2x1 for Speed of Robot 2
        Speed_L3 = np.array([[self.vL3],
                             [self.vR3]])  # Vector 2x1 for Speed of Robot 3
        Speed_L4 = np.array([[self.vL4],
                             [self.vR4]])  # Vector 2x1 for Speed of Robot 4
        Speed_L5 = np.array([[self.vL5],
                             [self.vR5]])  # Vector 2x1 for Speed of Robot 5
        Speed_L6 = np.array([[self.vL6],
                             [self.vR6]])  # Vector 2x1 for Speed of Robot 6

        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M2 = np.array([[S2[0]], [S2[1]]]).reshape(2, 1)  #2x1
        M3 = np.array([[S3[0]], [S3[1]]]).reshape(2, 1)  #2x1
        M4 = np.array([[S4[0]], [S4[1]]]).reshape(2, 1)  #2x1
        M5 = np.array([[S5[0]], [S5[1]]]).reshape(2, 1)  #2x1
        M6 = np.array([[S6[0]], [S6[1]]]).reshape(2, 1)  #2x1

        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2)  # 2x1 (VL2, VR2)
        Speed_L3 = np.dot(Di, M3)  # 2x1 (VL3, VR3)
        Speed_L4 = np.dot(Di, M4)  # 2x1 (VL4, VR4)
        Speed_L5 = np.dot(Di, M5)  # 2x1 (VL5, VR5)
        Speed_L6 = np.dot(Di, M6)  # 2x1 (VL6, VR6)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])
        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])
        VL4 = float(Speed_L4[0])
        VR4 = float(Speed_L4[1])
        VL5 = float(Speed_L5[0])
        VR5 = float(Speed_L5[1])
        VL6 = float(Speed_L6[0])
        VR6 = float(Speed_L6[1])

        " Publish Speed Commands to Robot 1 "

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)

        " Publish Speed Commands to Robot 2 "

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)

        " Publish Speed Commands to Robot 3 "

        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)

        " Publish Speed Commands to Robot 4 "

        msgl4 = Float32()
        msgr4 = Float32()
        msgl4.data = VL4
        msgr4.data = VR4
        self.publisher_l4.publish(msgl4)
        self.publisher_r4.publish(msgr4)

        " Publish Speed Commands to Robot 5 "

        msgl5 = Float32()
        msgr5 = Float32()
        msgl5.data = VL5
        msgr5.data = VR5
        self.publisher_l5.publish(msgl5)
        self.publisher_r5.publish(msgr5)

        " Publish Speed Commands to Robot 6 "

        msgl6 = Float32()
        msgr6 = Float32()
        msgl6.data = VL6
        msgr6.data = VR6
        self.publisher_l6.publish(msgl6)
        self.publisher_r6.publish(msgr6)

        self.i += 1
Пример #2
0
    def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "
        #Initialize Phi's
        if self.t == 0:
            self.Phix1 = 0  # 1x1
            self.Phiy1 = 0  # 1x1
            self.Phix2 = 0  # 1x1
            self.Phiy2 = 0  # 1x1
            self.t += 1

        Mx1 = self.x2 - self.x1
        My1 = self.y2 - self.y1

        Mx2 = self.x1 - self.x2
        My2 = self.y1 - self.y2

        " Use MLP to Predict control inputs "

        relative_pose_1 = [Mx1, My1, self.Phix1,
                           self.Phiy1]  # tensor data for MLP model
        relative_pose_2 = [Mx2, My2, self.Phix2,
                           self.Phiy2]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1, loaded_model)  # predict control input u1, tensor
        u2_predicted = MLP_Model.predict(
            relative_pose_2, loaded_model)  # predict control input u2, tensor

        print(u1_predicted)

        self.Phix1 = u2_predicted[0][0]  # 1x1
        self.Phiy1 = u2_predicted[0][1]  # 1x1

        self.Phix2 = u1_predicted[0][0]  # 1x1
        self.Phiy2 = u1_predicted[0][1]  # 1x1

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[u2_predicted[0][0]], [
            u2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S2 = np.array([[self.v2], [self.w2]])  #2x1
        G2 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np)  # 2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2],
                             [self.vR2]])  # Vector 2x1 for Speed of Robot 2

        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M2 = np.array([[S2[0]], [S2[1]]]).reshape(2, 1)  #2x1

        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2)  # 2x1 (VL2, VR2)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])

        " Publish Speed Commands to Robot 1 "

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)
        #self.get_logger().info('Publishing R1: "%s"' % msgr1.data)

        " Publish Speed Commands to Robot 2 "

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)

        self.i += 1
"""
Code for loading MLP parameters

@author: hussein
"""

import torch
import MLP_Model

# load model using dict
FILE = "model.pth"
loaded_model = MLP_Model.ModelE()
loaded_model.load_state_dict(torch.load(FILE))
loaded_model.eval()

# for param in loaded_model.parameters():
#     print(param)

Input = [ 0,	0,	0,	0 ]

u = MLP_Model.predict(Input, loaded_model)

print(u)
    def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "

        # Initialize Phi's
        if self.t == 0:
            self.Phix3 = 0  # 1x1
            self.Phiy3 = 0  # 1x1
            self.Phix4 = 0  # 1x1
            self.Phiy4 = 0  # 1x1
            self.t += 1

        Mx3 = self.x4 - self.x3
        My3 = self.y4 - self.y3

        Mx4 = self.x3 - self.x4
        My4 = self.y3 - self.y4

        " Use MLP to Predict control inputs "

        relative_pose_3 = [Mx3, My3, self.Phix3,
                           self.Phiy3]  # tensor data for MLP model
        relative_pose_4 = [Mx4, My4, self.Phix4,
                           self.Phiy4]  # tensor data for MLP model

        u3_predicted = MLP_Model.predict(
            relative_pose_3, loaded_model)  # predict control input u1, tensor
        u4_predicted = MLP_Model.predict(
            relative_pose_4, loaded_model)  # predict control input u2, tensor

        self.Phix3 = u4_predicted[0][0]  # 1x1
        self.Phiy3 = u4_predicted[0][1]  # 1x1

        self.Phix4 = u3_predicted[0][0]  # 1x1
        self.Phiy4 = u3_predicted[0][1]  # 1x1

        u3_predicted_np = np.array([[u3_predicted[0][0]], [
            u3_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u4_predicted_np = np.array([[u4_predicted[0][0]], [
            u4_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S3 = np.array([[self.v3], [self.w3]])  #2x1
        G3 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R3 = np.array([[math.cos(self.Theta3),
                        math.sin(self.Theta3)],
                       [-math.sin(self.Theta3),
                        math.cos(self.Theta3)]])  #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np)  #2x1

        S4 = np.array([[self.v4], [self.w4]])  #2x1
        G4 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R4 = np.array([[math.cos(self.Theta4),
                        math.sin(self.Theta4)],
                       [-math.sin(self.Theta4),
                        math.cos(self.Theta4)]])  #2x2
        S4 = np.dot(np.dot(G4, R4), u4_predicted_np)  #2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L3 = np.array([[self.vL3],
                             [self.vR3]])  # Vector 2x1 for Speed of Robot 3
        Speed_L4 = np.array([[self.vL4],
                             [self.vR4]])  # Vector 2x1 for Speed of Robot 4

        M3 = np.array([[S3[0]], [S3[1]]]).reshape(2, 1)  #2x1
        M4 = np.array([[S4[0]], [S4[1]]]).reshape(2, 1)  #2x1

        Speed_L3 = np.dot(Di, M3)  # 2x1 (VL3, VR3)
        Speed_L4 = np.dot(Di, M4)  # 2x1 (VL4, VR4)

        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])
        VL4 = float(Speed_L4[0])
        VR4 = float(Speed_L4[1])

        " Publish Speed Commands to Robot 3 "

        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)

        " Publish Speed Commands to Robot 4 "

        msgl4 = Float32()
        msgr4 = Float32()
        msgl4.data = VL4
        msgr4.data = VR4
        self.publisher_l4.publish(msgl4)
        self.publisher_r4.publish(msgr4)

        self.i += 1
Пример #5
0
    def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "
        # Initialize Phi's
        if self.t == 0:
            self.Phix1 = 0  # 1x1
            self.Phiy1 = 0  # 1x1
            self.Phix2 = 0  # 1x1
            self.Phiy2 = 0  # 1x1
            self.Phix3 = 0  # 1x1
            self.Phiy3 = 0  # 1x1
            self.Phix4 = 0  # 1x1
            self.Phiy4 = 0  # 1x1
            self.Phix5 = 0  # 1x1
            self.Phiy5 = 0  # 1x1
            self.Phix6 = 0  # 1x1
            self.Phiy6 = 0  # 1x1
            self.t += 1

        " Use Adjacency Matrix to find Mxy and Phi's "

        #A = np.ones(6) - np.identity(6) # Adjancency Matrix

        self.X = np.array([[self.x1], [self.x2], [self.x3], [self.x4],
                           [self.x5], [self.x6]])  #6x1
        self.Y = np.array([[self.y1], [self.y2], [self.y3], [self.y4],
                           [self.y5], [self.y6]])  #6x1

        Mx = np.zeros((6, 1))  # 6x1
        My = np.zeros((6, 1))  # 6x1

        for i in range(1, 7):
            for j in range(1, 7):
                Mx[i - 1] += (A[i - 1][j - 1]) * (self.X[j - 1] - self.X[i - 1]
                                                  )  # 1x1 each
                My[i - 1] += (A[i - 1][j - 1]) * (self.Y[j - 1] - self.Y[i - 1]
                                                  )  # 1x1 each

        Mx1 = float(Mx[0]) / 5  # 1x1
        My1 = float(My[0]) / 5  # 1x1

        Mx2 = float(Mx[1]) / 5  # 1x1
        My2 = float(My[1]) / 5  # 1x1

        Mx3 = float(Mx[2]) / 5  # 1x1
        My3 = float(My[2]) / 5  # 1x1

        Mx4 = float(Mx[3]) / 5  # 1x1
        My4 = float(My[3]) / 5  # 1x1

        Mx5 = float(Mx[4]) / 5  # 1x1
        My5 = float(My[4]) / 5  # 1x1

        Mx6 = float(Mx[5]) / 5  # 1x1
        My6 = float(My[5]) / 5  # 1x1

        # Mx1 = ( (self.x2-self.x1)+(self.x3-self.x1)+(self.x4-self.x1)+(self.x5-self.x1)+(self.x6-self.x1) ) / 5 # 1x1
        # My1 = ( (self.y2-self.y1)+(self.y3-self.y1)+(self.y4-self.y1)+(self.y5-self.y1)+(self.y6-self.y1) ) / 5 # 1x1

        # Mx2 = ( (self.x1-self.x2)+(self.x3-self.x2)+(self.x4-self.x2)+(self.x5-self.x2)+(self.x6-self.x2) ) / 5 # 1x1
        # My2 = ( (self.y1-self.y2)+(self.y3-self.y2)+(self.y4-self.y2)+(self.y5-self.y2)+(self.y6-self.y2) ) / 5 # 1x1

        # Mx3 = ( (self.x1-self.x3)+(self.x2-self.x3)+(self.x4-self.x3)+(self.x5-self.x3)+(self.x6-self.x3) ) / 5 # 1x1
        # My3 = ( (self.y1-self.y3)+(self.y2-self.y3)+(self.y4-self.y3)+(self.y5-self.y3)+(self.y6-self.y3) ) / 5 # 1x1

        # Mx4 = ( (self.x1-self.x4)+(self.x2-self.x4)+(self.x3-self.x4)+(self.x5-self.x4)+(self.x6-self.x4) ) / 5 # 1x1
        # My4 = ( (self.y1-self.y4)+(self.y2-self.y4)+(self.y3-self.y4)+(self.y5-self.y4)+(self.y6-self.y4) ) / 5 # 1x1

        # Mx5 = ( (self.x1-self.x5)+(self.x2-self.x5)+(self.x3-self.x5)+(self.x4-self.x5)+(self.x6-self.x5) ) / 5 # 1x1
        # My5 = ( (self.y1-self.y5)+(self.y2-self.y5)+(self.y3-self.y5)+(self.y4-self.y5)+(self.y6-self.y5) ) / 5 # 1x1

        # Mx6 = ( (self.x1-self.x6)+(self.x2-self.x6)+(self.x3-self.x6)+(self.x4-self.x6)+(self.x5-self.x6) ) / 5 # 1x1
        # My6 = ( (self.y1-self.y6)+(self.y2-self.y6)+(self.y3-self.y6)+(self.y4-self.y6)+(self.y5-self.y6) ) / 5 # 1x1

        " Use MLP to Predict control inputs "

        relative_pose_1 = [Mx1, My1, self.Phix1,
                           self.Phiy1]  # tensor data for MLP model
        relative_pose_2 = [Mx2, My2, self.Phix2,
                           self.Phiy2]  # tensor data for MLP model
        relative_pose_3 = [Mx3, My3, self.Phix3,
                           self.Phiy3]  # tensor data for MLP model
        relative_pose_4 = [Mx4, My4, self.Phix4,
                           self.Phiy4]  # tensor data for MLP model
        relative_pose_5 = [Mx5, My5, self.Phix5,
                           self.Phiy5]  # tensor data for MLP model
        relative_pose_6 = [Mx6, My6, self.Phix6,
                           self.Phiy6]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1, loaded_model)  # predict control input u1, tensor
        u2_predicted = MLP_Model.predict(
            relative_pose_2, loaded_model)  # predict control input u2, tensor
        u3_predicted = MLP_Model.predict(
            relative_pose_3, loaded_model)  # predict control input u3, tensor
        u4_predicted = MLP_Model.predict(
            relative_pose_4, loaded_model)  # predict control input u4, tensor
        u5_predicted = MLP_Model.predict(
            relative_pose_5, loaded_model)  # predict control input u5, tensor
        u6_predicted = MLP_Model.predict(
            relative_pose_6, loaded_model)  # predict control input u6, tensor

        Phix = np.zeros((6, 1))  # 6x1
        Phiy = np.zeros((6, 1))  # 6x1

        for i in range(1, 7):
            for j in range(1, 7):
                Phix[i - 1] += (A[i - 1][j - 1]) * (Mx[j - 1])  # 1x1 each
                Phiy[i - 1] += (A[i - 1][j - 1]) * (My[j - 1])  # 1x1 each

        self.Phix1 = float(Phix[0]) / 5  # 1x1
        self.Phiy1 = float(Phiy[0]) / 5  # 1x1

        self.Phix2 = float(Phix[1]) / 5  # 1x1
        self.Phiy2 = float(Phiy[1]) / 5  # 1x1

        self.Phix3 = float(Phix[2]) / 5  # 1x1
        self.Phiy3 = float(Phiy[2]) / 5  # 1x1

        self.Phix4 = float(Phix[3]) / 5  # 1x1
        self.Phiy4 = float(Phiy[3]) / 5  # 1x1

        self.Phix5 = float(Phix[4]) / 5  # 1x1
        self.Phiy5 = float(Phiy[4]) / 5  # 1x1

        self.Phix6 = float(Phix[5]) / 5  # 1x1
        self.Phiy6 = float(Phiy[5]) / 5  # 1x1

        # self.Phix1 = ( Mx2 + Mx3 + Mx4 + Mx5 + Mx6 ) / 5 # 1x1
        # self.Phiy1 = ( My2 + My3 + My4 + My5 + My6 ) / 5 # 1x1

        # self.Phix2 = ( Mx1 + Mx3 + Mx4 + Mx5 + Mx6 ) / 5 # 1x1
        # self.Phiy2 = ( My1 + My3 + My4 + My5 + My6 ) / 5 # 1x1

        # self.Phix3 = ( Mx1 + Mx2 + Mx4 + Mx5 + Mx6 ) / 5 # 1x1
        # self.Phiy3 = ( My1 + My2 + My4 + My5 + My6 ) / 5 # 1x1

        # self.Phix4 = ( Mx1 + Mx2 + Mx3 + Mx5 + Mx6 ) / 5 # 1x1
        # self.Phiy4 = ( My1 + My2 + My3 + My5 + My6 ) / 5 # 1x1

        # self.Phix5 = ( Mx1 + Mx2 + Mx3 + Mx4 + Mx6 ) / 5 # 1x1
        # self.Phiy5 = ( My1 + My2 + My3 + My4 + My6 ) / 5 # 1x1

        # self.Phix6 = ( Mx1 + Mx2 + Mx3 + Mx4 + Mx5 ) / 5 # 1x1
        # self.Phiy6 = ( My1 + My2 + My3 + My4 + My5 ) / 5 # 1x1

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[u2_predicted[0][0]], [
            u2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u3_predicted_np = np.array([[u3_predicted[0][0]], [
            u3_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u4_predicted_np = np.array([[u4_predicted[0][0]], [
            u4_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u5_predicted_np = np.array([[u5_predicted[0][0]], [
            u5_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u6_predicted_np = np.array([[u6_predicted[0][0]], [
            u6_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S2 = np.array([[self.v2], [self.w2]])  #2x1
        G2 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np)  # 2x1

        S3 = np.array([[self.v3], [self.w3]])  #2x1
        G3 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R3 = np.array([[math.cos(self.Theta3),
                        math.sin(self.Theta3)],
                       [-math.sin(self.Theta3),
                        math.cos(self.Theta3)]])  #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np)  #2x1

        S4 = np.array([[self.v4], [self.w4]])  #2x1
        G4 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R4 = np.array([[math.cos(self.Theta4),
                        math.sin(self.Theta4)],
                       [-math.sin(self.Theta4),
                        math.cos(self.Theta4)]])  #2x2
        S4 = np.dot(np.dot(G4, R4), u4_predicted_np)  #2x1

        S5 = np.array([[self.v5], [self.w5]])  #2x1
        G5 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R5 = np.array([[math.cos(self.Theta5),
                        math.sin(self.Theta5)],
                       [-math.sin(self.Theta5),
                        math.cos(self.Theta5)]])  #2x2
        S5 = np.dot(np.dot(G5, R5), u5_predicted_np)  #2x1

        S6 = np.array([[self.v6], [self.w6]])  #2x1
        G6 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R6 = np.array([[math.cos(self.Theta6),
                        math.sin(self.Theta6)],
                       [-math.sin(self.Theta6),
                        math.cos(self.Theta6)]])  #2x2
        S6 = np.dot(np.dot(G6, R6), u6_predicted_np)  #2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2],
                             [self.vR2]])  # Vector 2x1 for Speed of Robot 2
        Speed_L3 = np.array([[self.vL3],
                             [self.vR3]])  # Vector 2x1 for Speed of Robot 3
        Speed_L4 = np.array([[self.vL4],
                             [self.vR4]])  # Vector 2x1 for Speed of Robot 4
        Speed_L5 = np.array([[self.vL5],
                             [self.vR5]])  # Vector 2x1 for Speed of Robot 5
        Speed_L6 = np.array([[self.vL6],
                             [self.vR6]])  # Vector 2x1 for Speed of Robot 6

        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M2 = np.array([[S2[0]], [S2[1]]]).reshape(2, 1)  #2x1
        M3 = np.array([[S3[0]], [S3[1]]]).reshape(2, 1)  #2x1
        M4 = np.array([[S4[0]], [S4[1]]]).reshape(2, 1)  #2x1
        M5 = np.array([[S5[0]], [S5[1]]]).reshape(2, 1)  #2x1
        M6 = np.array([[S6[0]], [S6[1]]]).reshape(2, 1)  #2x1

        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2)  # 2x1 (VL2, VR2)
        Speed_L3 = np.dot(Di, M3)  # 2x1 (VL3, VR3)
        Speed_L4 = np.dot(Di, M4)  # 2x1 (VL4, VR4)
        Speed_L5 = np.dot(Di, M5)  # 2x1 (VL5, VR5)
        Speed_L6 = np.dot(Di, M6)  # 2x1 (VL6, VR6)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])
        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])
        VL4 = float(Speed_L4[0])
        VR4 = float(Speed_L4[1])
        VL5 = float(Speed_L5[0])
        VR5 = float(Speed_L5[1])
        VL6 = float(Speed_L6[0])
        VR6 = float(Speed_L6[1])

        " Publish Speed Commands to Robot 1 "

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)

        " Publish Speed Commands to Robot 2 "

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)

        " Publish Speed Commands to Robot 3 "

        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)

        " Publish Speed Commands to Robot 4 "

        msgl4 = Float32()
        msgr4 = Float32()
        msgl4.data = VL4
        msgr4.data = VR4
        self.publisher_l4.publish(msgl4)
        self.publisher_r4.publish(msgr4)

        " Publish Speed Commands to Robot 5 "

        msgl5 = Float32()
        msgr5 = Float32()
        msgl5.data = VL5
        msgr5.data = VR5
        self.publisher_l5.publish(msgl5)
        self.publisher_r5.publish(msgr5)

        " Publish Speed Commands to Robot 6 "

        msgl6 = Float32()
        msgr6 = Float32()
        msgl6.data = VL6
        msgr6.data = VR6
        self.publisher_l6.publish(msgl6)
        self.publisher_r6.publish(msgr6)

        self.i += 1
    def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "
        # Initialize Phi's
        if self.t == 0:
            self.Phix1 = 0  # 1x1
            self.Phiy1 = 0  # 1x1
            self.Phix2 = 0  # 1x1
            self.Phiy2 = 0  # 1x1
            self.Phix3 = 0  # 1x1
            self.Phiy3 = 0  # 1x1
            self.t += 1

        Mx1 = (self.x2 - self.x1)
        My1 = (self.y2 - self.y1)

        Mx2 = ((self.x1 - self.x2) + (self.x3 - self.x2)) / 2
        My2 = ((self.y1 - self.y2) + (self.y3 - self.y2)) / 2

        Mx3 = (self.x2 - self.x3)
        My3 = (self.y2 - self.y3)

        " Use MLP to Predict control inputs "

        relative_pose_1 = [Mx1, My1, self.Phix1,
                           self.Phiy1]  # tensor data for MLP model
        relative_pose_2 = [Mx2, My2, self.Phix2,
                           self.Phiy2]  # tensor data for MLP model
        relative_pose_3 = [Mx3, My3, self.Phix3,
                           self.Phiy3]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1, loaded_model)  # predict control input u1, tensor
        u2_predicted = MLP_Model.predict(
            relative_pose_2, loaded_model)  # predict control input u2, tensor
        u3_predicted = MLP_Model.predict(
            relative_pose_3, loaded_model)  # predict control input u3, tensor

        self.Phix1 = u2_predicted[0][0]  # 1x1
        self.Phiy1 = u2_predicted[0][1]  # 1x1

        self.Phix2 = (u1_predicted[0][0] + u3_predicted[0][0]) / 2  # 1x1
        self.Phiy2 = (u1_predicted[0][1] + u3_predicted[0][1]) / 2  # 1x1

        self.Phix3 = u2_predicted[0][0]  # 1x1
        self.Phiy3 = u2_predicted[0][1]  # 1x1

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[u2_predicted[0][0]], [
            u2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u3_predicted_np = np.array([[u3_predicted[0][0]], [
            u3_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S2 = np.array([[self.v2], [self.w2]])  #2x1
        G2 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np)  # 2x1

        S3 = np.array([[self.v3], [self.w3]])  #2x1
        G3 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R3 = np.array([[math.cos(self.Theta3),
                        math.sin(self.Theta3)],
                       [-math.sin(self.Theta3),
                        math.cos(self.Theta3)]])  #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np)  # 2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2],
                             [self.vR2]])  # Vector 2x1 for Speed of Robot 2
        Speed_L3 = np.array([[self.vL3],
                             [self.vR3]])  # Vector 2x1 for Speed of Robot 3

        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M2 = np.array([[S2[0]], [S2[1]]]).reshape(2, 1)  #2x1
        M3 = np.array([[S3[0]], [S3[1]]]).reshape(2, 1)  #2x1

        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2)  # 2x1 (VL2, VR2)
        Speed_L3 = np.dot(Di, M3)  # 2x1 (VL1, VR1)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])
        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])

        " Publish Speed Commands to Robot 1 "

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)

        " Publish Speed Commands to Robot 2 "

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)

        " Publish Speed Commands to Robot 3 "

        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)

        self.i += 1
    def listener_callback(self, msg):
        
        if msg.transforms[0].child_frame_id == 'robot1' :  
            self.x1 = msg.transforms[0].transform.translation.x
            self.y1 = msg.transforms[0].transform.translation.y
            self.xr1 = msg.transforms[0].transform.rotation.x
            self.yr1 = msg.transforms[0].transform.rotation.y
            self.zr1 = msg.transforms[0].transform.rotation.z
            self.wr1 = msg.transforms[0].transform.rotation.w
            self.Theta1 = euler_from_quaternion(self.xr1,self.yr1,self.zr1,self.wr1)
   

        if  msg.transforms[0].child_frame_id == 'robot2' :
            self.x2 = msg.transforms[0].transform.translation.x
            self.y2 = msg.transforms[0].transform.translation.y
            self.xr2 = msg.transforms[0].transform.rotation.x
            self.yr2 = msg.transforms[0].transform.rotation.y
            self.zr2 = msg.transforms[0].transform.rotation.z
            self.wr2 = msg.transforms[0].transform.rotation.w
            self.Theta2 = euler_from_quaternion(self.xr2,self.yr2,self.zr2,self.wr2) 

        if  msg.transforms[0].child_frame_id == 'robot3' :
            
            self.x3 = msg.transforms[0].transform.translation.x
            self.y3 = msg.transforms[0].transform.translation.y
            self.xr3 = msg.transforms[0].transform.rotation.x
            self.yr3 = msg.transforms[0].transform.rotation.y
            self.zr3 = msg.transforms[0].transform.rotation.z
            self.wr3 = msg.transforms[0].transform.rotation.w
            self.Theta3 = euler_from_quaternion(self.xr3,self.yr3,self.zr3,self.wr3)        

        if  msg.transforms[0].child_frame_id == 'robot4' :
            
            self.x4 = msg.transforms[0].transform.translation.x
            self.y4 = msg.transforms[0].transform.translation.y
            self.xr4 = msg.transforms[0].transform.rotation.x
            self.yr4 = msg.transforms[0].transform.rotation.y
            self.zr4 = msg.transforms[0].transform.rotation.z
            self.wr4 = msg.transforms[0].transform.rotation.w
            self.Theta4 = euler_from_quaternion(self.xr4,self.yr4,self.zr4,self.wr4)        
            
        if  msg.transforms[0].child_frame_id == 'robot5' :
            
            self.x5 = msg.transforms[0].transform.translation.x
            self.y5 = msg.transforms[0].transform.translation.y
            self.xr5 = msg.transforms[0].transform.rotation.x
            self.yr5 = msg.transforms[0].transform.rotation.y
            self.zr5 = msg.transforms[0].transform.rotation.z
            self.wr5 = msg.transforms[0].transform.rotation.w
            self.Theta5 = euler_from_quaternion(self.xr5,self.yr5,self.zr5,self.wr5)               
            
        if  msg.transforms[0].child_frame_id == 'robot6' :
            
            self.x6 = msg.transforms[0].transform.translation.x
            self.y6 = msg.transforms[0].transform.translation.y
            self.xr6 = msg.transforms[0].transform.rotation.x
            self.yr6 = msg.transforms[0].transform.rotation.y
            self.zr6 = msg.transforms[0].transform.rotation.z
            self.wr6 = msg.transforms[0].transform.rotation.w
            self.Theta6 = euler_from_quaternion(self.xr6,self.yr6,self.zr6,self.wr6)          
        
        
        
        
        # Initialize Phi's and Mxy's
        if self.i ==0:
            self.Phix1 = 0 # 1x1
            self.Phiy1 = 0 # 1x1
            self.Phix2 = 0 # 1x1
            self.Phiy2 = 0 # 1x1
            self.Phix3 = 0 # 1x1
            self.Phiy3 = 0 # 1x1
            self.Phix4 = 0 # 1x1
            self.Phiy4 = 0 # 1x1
            self.Phix5 = 0 # 1x1
            self.Phiy5 = 0 # 1x1
            self.Phix6 = 0 # 1x1
            self.Phiy6 = 0 # 1x1
            self.Mx1 = 0
            self.My1 = 0
            self.Mx2 = 0
            self.My2 = 0
            self.Mx3 = 0
            self.My3 = 0
            self.Mx4 = 0
            self.My4 = 0
            self.Mx5 = 0
            self.My5 = 0
            self.Mx6 = 0
            self.My6 = 0              
            self.i = 1                
        
            
        " Use MLP to Predict control inputs "
        
        # Calculate Mx's and My's
        
        self.Mx1 = self.x2 - self.x1 # 1x1
        self.My1 = self.y2 - self.y1 # 1x1
        
        self.Mx2 = ( ( self.x1 - self.x2 ) + ( self.x3 - self.x2 ) ) / 2 # 1x1
        self.My2 = ( ( self.y1 - self.y2 ) + ( self.y3 - self.y2 ) ) / 2 # 1x1            
    
        self.Mx3 = ( ( self.x2 - self.x3 ) + ( self.x4 - self.x3 ) ) / 2 # 1x1
        self.My3 = ( ( self.y2 - self.y3 ) + ( self.y4 - self.y3 ) ) / 2 # 1x1               
        
        self.Mx4 = ( ( self.x3 - self.x4 ) + ( self.x5 - self.x4 ) ) / 2 # 1x1
        self.My4 = ( ( self.y3 - self.y4 ) + ( self.y5 - self.y4 ) ) / 2 # 1x1               
    
        self.Mx5 = ( ( self.x4 - self.x5 ) + ( self.x6 - self.x5 ) ) / 2 # 1x1
        self.My5 = ( ( self.y4 - self.y5 ) + ( self.y6 - self.y5 ) ) / 2 # 1x1   
        
        self.Mx6 = self.x5 - self.x6 # 1x1
        self.My6 = self.y5 - self.y6 # 1x1   
        
        # Calculate input vector for MLP Model
        
        relative_pose_1 = [ self.Mx1, self.My1, self.Phix1, self.Phiy1 ] # tensor data for MLP model
        relative_pose_2 = [ self.Mx2, self.My2, self.Phix2, self.Phiy2 ] # tensor data for MLP model
        relative_pose_3 = [ self.Mx3, self.My3, self.Phix3, self.Phiy3 ] # tensor data for MLP model
        relative_pose_4 = [ self.Mx4, self.My4, self.Phix4, self.Phiy4 ] # tensor data for MLP model
        relative_pose_5 = [ self.Mx5, self.My5, self.Phix5, self.Phiy5 ] # tensor data for MLP model
        relative_pose_6 = [ self.Mx6, self.My6, self.Phix6, self.Phiy6 ] # tensor data for MLP model
     
        # Predict control input's ui's using MLP
    
        u1_predicted = MLP_Model.predict(relative_pose_1, loaded_model) # predict control input u1, tensor
        u2_predicted = MLP_Model.predict(relative_pose_2, loaded_model) # predict control input u2, tensor
        u3_predicted = MLP_Model.predict(relative_pose_3, loaded_model) # predict control input u3, tensor
        u4_predicted = MLP_Model.predict(relative_pose_4, loaded_model) # predict control input u4, tensor
        u5_predicted = MLP_Model.predict(relative_pose_5, loaded_model) # predict control input u5, tensor
        u6_predicted = MLP_Model.predict(relative_pose_6, loaded_model) # predict control input u6, tensor
        
        # Calculate Phix's and Phiy's from output of MLP
        
        self.Phix1 = u2_predicted[0][0]   # 1x1
        self.Phiy1 = u2_predicted[0][1]   # 1x1
        
        self.Phix2 = ( u1_predicted[0][0] + u3_predicted[0][0] )/2 # 1x1
        self.Phiy2 = ( u1_predicted[0][1] + u3_predicted[0][1] )/2 # 1x1
        
        self.Phix3 = ( u2_predicted[0][0] + u4_predicted[0][0] )/2 # 1x1
        self.Phiy3 = ( u2_predicted[0][1] + u4_predicted[0][1] )/2 # 1x1
        
        self.Phix4 = ( u3_predicted[0][0] + u5_predicted[0][0] )/2 # 1x1
        self.Phiy4 = ( u3_predicted[0][1] + u5_predicted[0][1] )/2 # 1x1
        
        self.Phix5 = ( u4_predicted[0][0] + u6_predicted[0][0] )/2 # 1x1
        self.Phiy5 = ( u4_predicted[0][1] + u6_predicted[0][1] )/2 # 1x1
        
        self.Phix6 = u5_predicted[0][0] # 1x1
        self.Phiy6 = u5_predicted[0][1] # 1x1              
        
        # Transform control inputs from tensor to numpy array for transforming unicycle to differential drive 
        
        u1_predicted_np = np.array([[ u1_predicted[0][0] ], [ u1_predicted[0][1] ]]) # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[ u2_predicted[0][0] ], [ u2_predicted[0][1] ]]) # from tensor to numpy array for calculation
        u3_predicted_np = np.array([[ u3_predicted[0][0] ], [ u3_predicted[0][1] ]]) # from tensor to numpy array for calculation
        u4_predicted_np = np.array([[ u4_predicted[0][0] ], [ u4_predicted[0][1] ]]) # from tensor to numpy array for calculation    
        u5_predicted_np = np.array([[ u5_predicted[0][0] ], [ u5_predicted[0][1] ]]) # from tensor to numpy array for calculation
        u6_predicted_np = np.array([[ u6_predicted[0][0] ], [ u6_predicted[0][1] ]]) # from tensor to numpy array for calculation        
                
                                 
        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "
        
        S1 = np.array([[self.v1], [self.w1]]) #2x1
        G1 = np.array([[1,0], [0,1/L]]) #2x2
        R1 = np.array([[math.cos(self.Theta1),math.sin(self.Theta1)],[-math.sin(self.Theta1),math.cos(self.Theta1)]]) #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np) #2x1
    
        S2 = np.array([[self.v2], [self.w2]]) #2x1
        G2 = np.array([[1,0], [0,1/L]]) #2x2
        R2 = np.array([[math.cos(self.Theta2),math.sin(self.Theta2)],[-math.sin(self.Theta2),math.cos(self.Theta2)]]) #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np) # 2x1
    
        S3 = np.array([[self.v3], [self.w3]]) #2x1
        G3 = np.array([[1,0], [0,1/L]]) #2x2
        R3 = np.array([[math.cos(self.Theta3),math.sin(self.Theta3)],[-math.sin(self.Theta3),math.cos(self.Theta3)]]) #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np) #2x1        
    
        S4 = np.array([[self.v4], [self.w4]]) #2x1
        G4 = np.array([[1,0], [0,1/L]]) #2x2
        R4 = np.array([[math.cos(self.Theta4),math.sin(self.Theta4)],[-math.sin(self.Theta4),math.cos(self.Theta4)]]) #2x2
        S4 = np.dot(np.dot(G4, R4), u4_predicted_np) #2x1        
    
        S5 = np.array([[self.v5], [self.w5]]) #2x1
        G5 = np.array([[1,0], [0,1/L]]) #2x2
        R5 = np.array([[math.cos(self.Theta5),math.sin(self.Theta5)],[-math.sin(self.Theta5),math.cos(self.Theta5)]]) #2x2
        S5 = np.dot(np.dot(G5, R5), u5_predicted_np) #2x1
    
        S6 = np.array([[self.v6], [self.w6]]) #2x1
        G6 = np.array([[1,0], [0,1/L]]) #2x2
        R6 = np.array([[math.cos(self.Theta6),math.sin(self.Theta6)],[-math.sin(self.Theta6),math.cos(self.Theta6)]]) #2x2
        S6 = np.dot(np.dot(G6, R6), u6_predicted_np) #2x1        
        
    
        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "
    
        D = np.array([[1/2,1/2],[-1/(2*d),1/(2*d)]]) #2x2
        Di = np.linalg.inv(D) #2x2
    
        Speed_L1 = np.array([[self.vL1], [self.vR1]]) # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2], [self.vR2]]) # Vector 2x1 for Speed of Robot 2 
        Speed_L3 = np.array([[self.vL3], [self.vR3]]) # Vector 2x1 for Speed of Robot 3
        Speed_L4 = np.array([[self.vL4], [self.vR4]]) # Vector 2x1 for Speed of Robot 4
        Speed_L5 = np.array([[self.vL5], [self.vR5]]) # Vector 2x1 for Speed of Robot 5
        Speed_L6 = np.array([[self.vL6], [self.vR6]]) # Vector 2x1 for Speed of Robot 6
    
    
        M1 = np.array([[S1[0]],[S1[1]]]).reshape(2,1) #2x1
        M2 = np.array([[S2[0]],[S2[1]]]).reshape(2,1) #2x1
        M3 = np.array([[S3[0]],[S3[1]]]).reshape(2,1) #2x1
        M4 = np.array([[S4[0]],[S4[1]]]).reshape(2,1) #2x1
        M5 = np.array([[S5[0]],[S5[1]]]).reshape(2,1) #2x1
        M6 = np.array([[S6[0]],[S6[1]]]).reshape(2,1) #2x1
    
        Speed_L1 = np.dot(Di, M1) # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2) # 2x1 (VL2, VR2)
        Speed_L3 = np.dot(Di, M3) # 2x1 (VL3, VR3)
        Speed_L4 = np.dot(Di, M4) # 2x1 (VL4, VR4)
        Speed_L5 = np.dot(Di, M5) # 2x1 (VL5, VR5)
        Speed_L6 = np.dot(Di, M6) # 2x1 (VL6, VR6)
    
    
        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])
        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])
        VL4 = float(Speed_L4[0])
        VR4 = float(Speed_L4[1])
        VL5 = float(Speed_L5[0])
        VR5 = float(Speed_L5[1])        
        VL6 = float(Speed_L6[0])
        VR6 = float(Speed_L6[1])
        
    
        " Publish Speed Commands to Robot 1 "
    
        msgl1 = Float32()    
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)
        #self.get_logger().info('Publishing R1: "%s"' % msgr1.data)
    
        " Publish Speed Commands to Robot 2 "
        
        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)
    
        " Publish Speed Commands to Robot 3 "
        
        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)
        
        " Publish Speed Commands to Robot 4 "
    
        msgl4 = Float32()
        msgr4 = Float32()
        msgl4.data = VL4
        msgr4.data = VR4
        self.publisher_l4.publish(msgl4)
        self.publisher_r4.publish(msgr4)        
    
        " Publish Speed Commands to Robot 5 "
        
        msgl5 = Float32()
        msgr5 = Float32()
        msgl5.data = VL5
        msgr5.data = VR5
        self.publisher_l5.publish(msgl5)
        self.publisher_r5.publish(msgr5)        
    
        " Publish Speed Commands to Robot 6 "
        
        msgl6 = Float32()
        msgr6 = Float32()
        msgl6.data = VL6
        msgr6.data = VR6
        self.publisher_l6.publish(msgl6)
        self.publisher_r6.publish(msgr6)
    def listener_callback(self, msg):

        if msg.transforms[0].child_frame_id == 'robot1':
            self.x1 = msg.transforms[0].transform.translation.x
            self.y1 = msg.transforms[0].transform.translation.y
            self.xr1 = msg.transforms[0].transform.rotation.x
            self.yr1 = msg.transforms[0].transform.rotation.y
            self.zr1 = msg.transforms[0].transform.rotation.z
            self.wr1 = msg.transforms[0].transform.rotation.w
            self.Theta1 = euler_from_quaternion(self.xr1, self.yr1, self.zr1,
                                                self.wr1)

        if msg.transforms[0].child_frame_id == 'robot2':
            self.x2 = msg.transforms[0].transform.translation.x
            self.y2 = msg.transforms[0].transform.translation.y
            self.xr2 = msg.transforms[0].transform.rotation.x
            self.yr2 = msg.transforms[0].transform.rotation.y
            self.zr2 = msg.transforms[0].transform.rotation.z
            self.wr2 = msg.transforms[0].transform.rotation.w
            self.Theta2 = euler_from_quaternion(self.xr2, self.yr2, self.zr2,
                                                self.wr2)

        self.distance = abs(self.x1 - self.x2) + abs(self.y1 - self.y2)

        if self.counter == 0:
            self.t0 = time.process_time()
            #print(t0)
            self.counter = 1

        #time.sleep(3)

        self.elapsed_time = time.process_time() - self.t0
        print(self.elapsed_time)
        #print(self.distance)

        " Calculate the Pose of Robot 2 w.r.t Robot 1 and Control input U1 "

        self.X1 = self.x2 - self.x1  # Relative Pose of Robot 2 wrt Robot 1 in Global frame for X coordinate of dimension 1x1
        self.Y1 = self.y2 - self.y1  # Relative Pose of Robot 2 wrt Robot 1 in Global frame for Y coordinate of dimension 1x1
        #self.U1 = u1 # Control input U1 in Global frame for robot 1 of dimension 2x1

        " Calculate the Pose of Robot 1 w.r.t Robot 2 and Control input U2 "

        self.X2 = self.x1 - self.x2  # Relative Pose of Robot 1 wrt Robot 2 in Global frame for X coordinate of dimension 1x1
        self.Y2 = self.y1 - self.y2  # Relative Pose of Robot 1 wrt Robot 2 in Global frame for Y coordinate of dimension 1x1
        #self.U2 = u2 # Control input U2 in Global frame for robot 2 of dimension 2x1

        " Transform Relative Pose from Global to Local Reference Frame "

        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2

        PoseG1 = np.array(
            [[self.X1], [self.Y1]]
        )  # Relative Pose of Robot 2 wrt Robot 1 in Global Frame of dimension 2x1
        PoseL1 = np.dot(
            R1, PoseG1
        )  # Relative Pose of Robot 2 wrt Robot 2 in Local Frame of dimension 2x1
        PoseG2 = np.array(
            [[self.X2], [self.Y2]]
        )  # Relative Pose of Robot 1 wrt Robot 1 in Global Frame of dimension 2x1
        PoseL2 = np.dot(
            R2, PoseG2
        )  # Relative Pose of Robot 1 wrt Robot 2 in Local Frame of dimension 2x1

        " Calculate Speed inputs V1/2 using MLP "

        relative_pose_1 = [PoseL1[0][0],
                           PoseL1[1][0]]  # tensor data for MLP model
        relative_pose_2 = [PoseL2[0][0],
                           PoseL2[1][0]]  # tensor data for MLP model

        V1_predicted = MLP_Model.predict(
            relative_pose_1,
            loaded_model)  # predict local control input u1, tensor
        V2_predicted = MLP_Model.predict(
            relative_pose_2,
            loaded_model)  # predict local control input u2, tensor

        V1_predicted_np = np.array([[V1_predicted[0][0]], [
            V1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        V2_predicted_np = np.array([[V2_predicted[0][0]], [
            V2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        print(V1_predicted_np)
        print(V2_predicted_np)

        VL1 = float(V1_predicted[0][0])
        VR1 = float(V1_predicted[0][1])
        VL2 = float(V2_predicted[0][0])
        VR2 = float(V2_predicted[0][1])

        " Publish Speed Commands to Robot 1"

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)
        #self.get_logger().info('Publishing R1: "%s"' % msgr1.data)

        " Publish Speed Commands to Robot 2"

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)

        #distance = self.x2 - self.x1
        #print(distance)

        " Write Values to CSV file "

        if self.count % 2 == 0:

            with open('plot_data.csv', 'a', newline='') as f:
                fieldnames = ['Delta_time', 'Distance']
                thewriter = csv.DictWriter(f, fieldnames=fieldnames)

                if self.i2 == 0:  # write header value once
                    thewriter.writeheader()
                    self.i2 = 1

                if self.j2 != 0:
                    thewriter.writerow({
                        'Delta_time': self.elapsed_time,
                        'Distance': self.distance
                    })

                if self.j2 == 0:  # skip first value because it's noisy
                    self.j2 = 1

        self.count += 1  # Counter to skip values while saving to csv file
Пример #9
0
    def listener_callback(self, msg):

        if msg.transforms[0].child_frame_id == 'robot1':
            self.x1 = msg.transforms[0].transform.translation.x
            self.y1 = msg.transforms[0].transform.translation.y
            self.xr1 = msg.transforms[0].transform.rotation.x
            self.yr1 = msg.transforms[0].transform.rotation.y
            self.zr1 = msg.transforms[0].transform.rotation.z
            self.wr1 = msg.transforms[0].transform.rotation.w
            self.Theta1 = euler_from_quaternion(self.xr1, self.yr1, self.zr1,
                                                self.wr1)

        if msg.transforms[0].child_frame_id == 'robot2':
            self.x2 = msg.transforms[0].transform.translation.x
            self.y2 = msg.transforms[0].transform.translation.y
            self.xr2 = msg.transforms[0].transform.rotation.x
            self.yr2 = msg.transforms[0].transform.rotation.y
            self.zr2 = msg.transforms[0].transform.rotation.z
            self.wr2 = msg.transforms[0].transform.rotation.w
            self.Theta2 = euler_from_quaternion(self.xr2, self.yr2, self.zr2,
                                                self.wr2)

        " Calculate the Pose of Robot 2 w.r.t Robot 1 and Control input U1 "

        self.X1 = self.x2 - self.x1  # Relative Pose of Robot 2 wrt Robot 1 in Global frame for X coordinate of dimension 1x1
        self.Y1 = self.y2 - self.y1  # Relative Pose of Robot 2 wrt Robot 1 in Global frame for Y coordinate of dimension 1x1
        #self.U1 = u1 # Control input U1 in Global frame for robot 1 of dimension 2x1

        " Calculate the Pose of Robot 1 w.r.t Robot 2 and Control input U2 "

        self.X2 = self.x1 - self.x2  # Relative Pose of Robot 1 wrt Robot 2 in Global frame for X coordinate of dimension 1x1
        self.Y2 = self.y1 - self.y2  # Relative Pose of Robot 1 wrt Robot 2 in Global frame for Y coordinate of dimension 1x1
        #self.U2 = u2 # Control input U2 in Global frame for robot 2 of dimension 2x1

        " Transform Relative Pose from Global to Local Reference Frame "

        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        R2 = np.array([[math.cos(self.Theta2),
                        math.sin(self.Theta2)],
                       [-math.sin(self.Theta2),
                        math.cos(self.Theta2)]])  #2x2

        PoseG1 = np.array(
            [[self.X1], [self.Y1]]
        )  # Relative Pose of Robot 2 wrt Robot 1 in Global Frame of dimension 2x1
        PoseL1 = np.dot(
            R1, PoseG1
        )  # Relative Pose of Robot 2 wrt Robot 2 in Local Frame of dimension 2x1
        PoseG2 = np.array(
            [[self.X2], [self.Y2]]
        )  # Relative Pose of Robot 1 wrt Robot 1 in Global Frame of dimension 2x1
        PoseL2 = np.dot(
            R2, PoseG2
        )  # Relative Pose of Robot 1 wrt Robot 2 in Local Frame of dimension 2x1

        " Calculate Control inputs u1 and u2 using MLP "

        relative_pose_1 = [PoseL1[0][0],
                           PoseL1[1][0]]  # tensor data for MLP model
        relative_pose_2 = [PoseL2[0][0],
                           PoseL2[1][0]]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1,
            loaded_model)  # predict local control input u1, tensor
        u2_predicted = MLP_Model.predict(
            relative_pose_2,
            loaded_model)  # predict local control input u2, tensor

        #u1 = np.array([[ self.k*(self.x2-self.x1)],[self.k*(self.y2-self.y1)]]) # 2x1
        #u2 = np.array([[ self.k*(self.x1-self.x2)],[self.k*(self.y1-self.y2)]]) # 2x1

        " Calculate V1/W1 and V2/W2 "

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u2_predicted_np = np.array([[u2_predicted[0][0]], [
            u2_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        print(u1_predicted_np)
        print(u2_predicted_np)

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(0), math.sin(0)], [-math.sin(0),
                                                    math.cos(0)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S2 = np.array([[self.v2], [self.w2]])  #2x1
        G2 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R2 = np.array([[math.cos(0), math.sin(0)], [-math.sin(0),
                                                    math.cos(0)]])  #2x2
        S2 = np.dot(np.dot(G2, R2), u2_predicted_np)  # 2x1

        " Calculate VL1/VR1 and VL2/VR2 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L2 = np.array([[self.vL2],
                             [self.vR2]])  # Vector 2x1 for Speed of Robot 2
        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M2 = np.array([[S2[0]], [S2[1]]]).reshape(2, 1)  #2x1
        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L2 = np.dot(Di, M2)  # 2x1 (VL2, VR2)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL2 = float(Speed_L2[0])
        VR2 = float(Speed_L2[1])

        " Transform Control Input U1 from Global to Local Reference Frame "

        #U1L = np.dot(R1, self.U1) # Control input of Robot 1 in Local Frame of dimension 2x1
        #U2L = np.dot(R2, self.U2) # Control input of Robot 2 in Local Frame of dimension 2x1

        " Publish Speed Commands to Robot 1"

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)
        #self.get_logger().info('Publishing R1: "%s"' % msgr1.data)

        " Publish Speed Commands to Robot 2"

        msgl2 = Float32()
        msgr2 = Float32()
        msgl2.data = VL2
        msgr2.data = VR2
        self.publisher_l2.publish(msgl2)
        self.publisher_r2.publish(msgr2)
Пример #10
0
    def timer_callback(self):

        " Calculate Mx1, My1, ...... Mx6, My6 "

        Mx1 = self.x3 - self.x1
        My1 = self.y3 - self.y1

        Mx3 = self.x1 - self.x3
        My3 = self.y1 - self.y3

        " Use MLP to Predict control inputs "

        relative_pose_1 = [Mx1, My1]  # tensor data for MLP model
        relative_pose_3 = [Mx3, My3]  # tensor data for MLP model

        u1_predicted = MLP_Model.predict(
            relative_pose_1, loaded_model)  # predict control input u1, tensor
        u3_predicted = MLP_Model.predict(
            relative_pose_3, loaded_model)  # predict control input u2, tensor

        u1_predicted_np = np.array([[u1_predicted[0][0]], [
            u1_predicted[0][1]
        ]])  # from tensor to numpy array for calculation
        u3_predicted_np = np.array([[u3_predicted[0][0]], [
            u3_predicted[0][1]
        ]])  # from tensor to numpy array for calculation

        " Calculate V1/W1, V2/W2, V3/W3, V4/W4, V5/W5, V6/W6 "

        S1 = np.array([[self.v1], [self.w1]])  #2x1
        G1 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R1 = np.array([[math.cos(self.Theta1),
                        math.sin(self.Theta1)],
                       [-math.sin(self.Theta1),
                        math.cos(self.Theta1)]])  #2x2
        S1 = np.dot(np.dot(G1, R1), u1_predicted_np)  #2x1

        S3 = np.array([[self.v3], [self.w3]])  #2x1
        G3 = np.array([[1, 0], [0, 1 / L]])  #2x2
        R3 = np.array([[math.cos(self.Theta3),
                        math.sin(self.Theta3)],
                       [-math.sin(self.Theta3),
                        math.cos(self.Theta3)]])  #2x2
        S3 = np.dot(np.dot(G3, R3), u3_predicted_np)  # 2x1

        " Calculate VL1/VR1, VL2/VR2, VL3/VR3, VL4/VR4, VL5/VR5, VL6/VR6 "

        D = np.array([[1 / 2, 1 / 2], [-1 / (2 * d), 1 / (2 * d)]])  #2x2
        Di = np.linalg.inv(D)  #2x2

        Speed_L1 = np.array([[self.vL1],
                             [self.vR1]])  # Vector 2x1 for Speed of Robot 1
        Speed_L3 = np.array([[self.vL3],
                             [self.vR3]])  # Vector 2x1 for Speed of Robot 3

        M1 = np.array([[S1[0]], [S1[1]]]).reshape(2, 1)  #2x1
        M3 = np.array([[S3[0]], [S3[1]]]).reshape(2, 1)  #2x1

        Speed_L1 = np.dot(Di, M1)  # 2x1 (VL1, VR1)
        Speed_L3 = np.dot(Di, M3)  # 2x1 (VL1, VR1)

        VL1 = float(Speed_L1[0])
        VR1 = float(Speed_L1[1])
        VL3 = float(Speed_L3[0])
        VR3 = float(Speed_L3[1])

        " Publish Speed Commands to Robot 1 "

        msgl1 = Float32()
        msgr1 = Float32()
        msgl1.data = VL1
        msgr1.data = VR1
        self.publisher_l1.publish(msgl1)
        self.publisher_r1.publish(msgr1)

        " Publish Speed Commands to Robot 3 "

        msgl3 = Float32()
        msgr3 = Float32()
        msgl3.data = VL3
        msgr3.data = VR3
        self.publisher_l3.publish(msgl3)
        self.publisher_r3.publish(msgr3)

        self.i += 1
"""
Code for loading MLP parameters

@author: hussein
"""

import torch
import MLP_Model

# load model using dict
FILE = "model.pth"
loaded_model = MLP_Model.MLP()
loaded_model.load_state_dict(torch.load(FILE))
loaded_model.eval()

for param in loaded_model.parameters():
    print(param)

row = [
    -0.373219668865204, 2.17479133605957, 4.73384788632393, -8.16998362541199
]

print(row)

u1_predicted = MLP_Model.predict(row, loaded_model)

print(u1_predicted)
#2.49452987313271
#4.87876439094543