Пример #1
0
def main():
    os.environ['REQUESTS_CA_BUNDLE'] = \
            PyInstallerUtils.resourcePath('cacert.pem')
    app = wx.App()
    luxocator = Luxocator(
            PyInstallerUtils.resourcePath('classifier.mat'),
            verboseSearchSession=False, verboseClassifier=False)
    luxocator.Show()
    app.MainLoop()
def main():
    app = wx.App()
    recognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_human_faces.xml')
    cascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalface.xml')
        # Uncomment the next argument for Haar.
        'cascades/haarcascade_frontalface_alt.xml')
    interactiveRecognizer = InteractiveRecognizer(
        recognizerPath, cascadePath, title='Interactive Human Face Recognizer')
    interactiveRecognizer.Show()
    app.MainLoop()
def main():
    app = wx.App()
    recognizerPath = PyInstallerUtils.resourcePath(
            'recognizers/lbph_human_faces.xml')
    cascadePath = PyInstallerUtils.resourcePath(
            # Uncomment the next argument for LBP.
            #'cascades/lbpcascade_frontalface.xml')
            # Uncomment the next argument for Haar.
            'cascades/haarcascade_frontalface_alt.xml')
    interactiveRecognizer = InteractiveRecognizer(
            recognizerPath, cascadePath,
            title='Interactive Human Face Recognizer')
    interactiveRecognizer.Show()
    app.MainLoop()
def main():
    app = wx.App()
    recognizerPath = PyInstallerUtils.resourcePath(
            'recognizers/lbph_cat_faces.xml')
    cascadePath = PyInstallerUtils.resourcePath(
            # Uncomment the next argument for LBP.
            #'cascades/lbpcascade_frontalcatface.xml')
            # Uncomment the next argument for Haar with basic
            # features.
            'cascades/haarcascade_frontalcatface.xml')
            # Uncomment the next argument for Haar with extended
            # features.
            #'cascades/haarcascade_frontalcatface_extended.xml')
    interactiveRecognizer = InteractiveRecognizer(
            recognizerPath, cascadePath,
            minNeighbors=8,
            title='Interactive Cat Face Recognizer')
    interactiveRecognizer.Show()
    app.MainLoop()
def main():
    app = wx.App()
    recognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_cat_faces.xml')
    cascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with basic
        # features.
        #'cascades/haarcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with extended
        # features.
        'cascades/haarcascade_frontalcatface_extended.xml')
    interactiveRecognizer = InteractiveRecognizer(
        recognizerPath,
        cascadePath,
        scaleFactor=1.2,
        minNeighbors=1,
        minSizeProportional=(0.125, 0.125),
        title='Interactive Cat Face Recognizer')
    interactiveRecognizer.Show()
    app.MainLoop()
def main():

    humanCascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalface.xml')
        # Uncomment the next argument for Haar.
        'cascades/haarcascade_frontalface_alt.xml')
    humanRecognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_human_faces.xml')
    if not os.path.isfile(humanRecognizerPath):
        sys.stderr.write('Human face recognizer not trained. Exiting.\n')
        return

    catCascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with basic
        # features.
        #'cascades/haarcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with extended
        # features.
        'cascades/haarcascade_frontalcatface_extended.xml')
    catRecognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_cat_faces.xml')
    if not os.path.isfile(catRecognizerPath):
        sys.stderr.write('Cat face recognizer not trained. Exiting.\n')
        return

    print('What email settings shall we use to send alerts?')

    defaultSMTPServer = 'smtp.gmail.com:587'
    print('Enter SMTP server (default: %s):' % defaultSMTPServer)
    smtpServer = sys.stdin.readline().rstrip()
    if not smtpServer:
        smtpServer = defaultSMTPServer

    print('Enter username:'******'Enter password:'******'')

    defaultAddr = '*****@*****.**' % login
    print('Enter "from" email address (default: %s):' % defaultAddr)
    fromAddr = sys.stdin.readline().rstrip()
    if not fromAddr:
        fromAddr = defaultAddr

    print('Enter comma-separated "to" email addresses (default: %s):' %
          defaultAddr)
    toAddrList = sys.stdin.readline().rstrip().split(',')
    if toAddrList == ['']:
        toAddrList = [defaultAddr]

    print('Enter comma-separated "c.c." email addresses:')
    ccAddrList = sys.stdin.readline().rstrip().split(',')

    capture = cv2.VideoCapture(0)
    imageWidth, imageHeight = \
            ResizeUtils.cvResizeCapture(capture, (1280, 720))
    minImageSize = min(imageWidth, imageHeight)

    humanDetector = cv2.CascadeClassifier(humanCascadePath)
    humanRecognizer = cv2.face.LBPHFaceRecognizer_create()
    humanRecognizer.read(humanRecognizerPath)
    humanMinSize = (int(minImageSize * 0.25), int(minImageSize * 0.25))
    humanMaxDistance = 25

    catDetector = cv2.CascadeClassifier(catCascadePath)
    catRecognizer = cv2.face.LBPHFaceRecognizer_create()
    catRecognizer.read(catRecognizerPath)
    catMinSize = (int(minImageSize * 0.125), int(minImageSize * 0.125))
    catMaxDistance = 25

    while True:
        success, image = capture.read()
        if image is not None:
            grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            equalizedGrayImage = cv2.equalizeHist(grayImage)

            humanRects = humanDetector.detectMultiScale(equalizedGrayImage,
                                                        scaleFactor=1.3,
                                                        minNeighbors=4,
                                                        minSize=humanMinSize)
            if recognizeAndReport(humanRecognizer, grayImage, humanRects,
                                  humanMaxDistance, 'human', smtpServer, login,
                                  password, fromAddr, toAddrList, ccAddrList):
                break

            catRects = catDetector.detectMultiScale(equalizedGrayImage,
                                                    scaleFactor=1.2,
                                                    minNeighbors=1,
                                                    minSize=catMinSize)
            # Reject any cat faces that overlap with human faces.
            catRects = GeomUtils.difference(catRects, humanRects)
            if recognizeAndReport(catRecognizer, grayImage, catRects,
                                  catMaxDistance, 'cat', smtpServer, login,
                                  password, fromAddr, toAddrList, ccAddrList):
                break
Пример #7
0
def main():
    app = wx.App()
    configPath = PyInstallerUtils.resourcePath('config.dat')
    livingHeadlights = LivingHeadlights(configPath)
    livingHeadlights.Show()
    app.MainLoop()
Пример #8
0
def main():

    humanCascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalface.xml')
        # Uncomment the next argument for Haar.
        'cascades/haarcascade_frontalface_alt.xml')
    humanRecognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_human_faces.xml')
    if not os.path.isfile(humanRecognizerPath):
        print >> sys.stderr, \
                'Human face recognizer not trained. Exiting.'
        return

    catCascadePath = PyInstallerUtils.resourcePath(
        # Uncomment the next argument for LBP.
        #'cascades/lbpcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with basic
        # features.
        #'cascades/haarcascade_frontalcatface.xml')
        # Uncomment the next argument for Haar with extended
        # features.
        'cascades/haarcascade_frontalcatface_extended.xml')
    catRecognizerPath = PyInstallerUtils.resourcePath(
        'recognizers/lbph_cat_faces.xml')
    if not os.path.isfile(catRecognizerPath):
        print >> sys.stderr, \
                'Cat face recognizer not trained. Exiting.'
        return

    capture = cv2.VideoCapture(0)
    imageWidth, imageHeight = \
            ResizeUtils.cvResizeCapture(capture, (1280, 720))
    minImageSize = min(imageWidth, imageHeight)

    humanDetector = cv2.CascadeClassifier(humanCascadePath)
    humanRecognizer = cv2.createLBPHFaceRecognizer()
    humanRecognizer.load(humanRecognizerPath)
    humanMinSize = (int(minImageSize * 0.25), int(minImageSize * 0.25))
    humanMaxDistance = 25

    catDetector = cv2.CascadeClassifier(catCascadePath)
    catRecognizer = cv2.createLBPHFaceRecognizer()
    catRecognizer.load(catRecognizerPath)
    catMinSize = (int(minImageSize * 0.125), int(minImageSize * 0.125))
    catMaxDistance = 25

    while True:
        success, image = capture.read()
        if image is not None:
            grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            equalizedGrayImage = cv2.equalizeHist(grayImage)

            humanRects = humanDetector.detectMultiScale(
                equalizedGrayImage,
                scaleFactor=1.3,
                minNeighbors=4,
                minSize=humanMinSize,
                flags=cv2.cv.CV_HAAR_SCALE_IMAGE)
            if recognizeAndReport(humanRecognizer, grayImage, humanRects,
                                  humanMaxDistance, 'human'):
                break

            catRects = catDetector.detectMultiScale(
                equalizedGrayImage,
                scaleFactor=1.2,
                minNeighbors=1,
                minSize=catMinSize,
                flags=cv2.cv.CV_HAAR_SCALE_IMAGE)
            # Reject any cat faces that overlap with human faces.
            catRects = GeomUtils.difference(catRects, humanRects)
            if recognizeAndReport(catRecognizer, grayImage, catRects,
                                  catMaxDistance, 'cat'):
                break