Пример #1
0
def predict_score(sub, model):
    save_price_path = '../data/tags_' + sub + '_results'
    data, target = TrainData.load_model(save_price_path + '_tag',
                                        '../model/' + sub + '_train_data.pkl')
    train_data = data[:-1]
    predict_data = data[-1]
    if model == 'KNN':
        model = knn_classifier(train_data, target)
    elif model == 'LR':
        model = logistic_regression_classifier(train_data, target)
    elif model == 'RF':
        model = random_forest_classifier(train_data, target)
    elif model == 'DT':
        model = decision_tree_classifier(train_data, target)
    else:
        model = gradient_boosting_classifier(train_data, target)
    predicted = model.predict(predict_data)
    return predicted[0] + 1
Пример #2
0
def predict_score(sub, m):
    save_price_path = last_path + '/data/tags_' + sub + '_results'
    data, target = TrainData.load_model(
        save_price_path + '_tag',
        last_path + '/model/' + sub + '_train_data.pkl')
    train_data = data[:-1]
    predict_data = data[-1]
    try:
        model = joblib.load(last_path + "/model_classifiers/model" + sub +
                            "_LR.pkl")
        predicted = model.predict(predict_data)
    except:
        if m == 'KNN':
            model = knn_classifier(train_data, target)
        elif m == 'LR':
            model = logistic_regression_classifier(train_data, target)
        elif m == 'RF':
            model = random_forest_classifier(train_data, target)
        elif m == 'DT':
            model = decision_tree_classifier(train_data, target)
        else:
            model = gradient_boosting_classifier(train_data, target)
        predicted = model.predict(predict_data)
    return predicted[0] + 1