def voronoiplot(df): Datalist=[] for i in df.index: #print i,[df['Latitude'][i],df['Longitude'][i]] Datalist.append([float(df['Latitude'][i]),float(df['Longitude'][i])] ) points = np.array(Datalist) #print points vor = Voronoi(points) #voronoi_plot_2d(vor) region,vertices=Vorplots.voronoi_finite_polygons_2d(vor) print len(region) geo_json,data_csv=DO.geojsonwrite(vor,region,vertices,df) print data_csv target = open(Constants.filelocations.VORONOI_GEOJSON, 'w') target.write(geo_json) target.close() data_csv.to_csv(Constants.filelocations.GEOJSON_CSV_DATA, header= True, index=False) return # LOCATION='/Users/Wuga/Documents/DATA/SFREHPDATA/HousingSales2012PL_GOOGLE.csv' # df=DO.readgeofile(LOCATION) # train,test,train_index,test_index=DO.dataseperator(df) # print [float(train['Latitude'][1]),float(train['Longitude'][1])] # voronoiplot(train)
''' Created on 09-23-2015 @author: Wuga ''' import folium import geocoder import DataOperation as DO import DataPreprocess as DP import Vorplots as V import Constants import pandas as pd g=geocoder.osm('dublin,ireland') loca=g.latlng print loca LOCATION=Constants.filelocations.DUBLIN_2010 df=DO.readgeofile(LOCATION) train,test,train_index,test_index=DO.dataseperator(df) map_osm = folium.Map(location=loca, zoom_start=9, max_zoom=18) train=DP.elim(train) train = train.reset_index(drop=True) V.voronoiplot(DP.elim(train)) map_osm.geo_json(geo_path=r'autovoronoi.json', data_out='/Users/Wuga/Documents/DATA/SFREHPDATA/pricedata.json',data=pd.read_csv('/Users/Wuga/Documents/DATA/SFREHPDATA/pricedata.csv'),columns=['Id','Price'],key_on='feature.id', threshold_scale=[200000,250000,300000,350000,400000,500000], fill_color='YlOrRd', fill_opacity=0.5, line_opacity=0.5, legend_name='SF house price') map_osm.create_map(path=Constants.filelocations.MAP_HTML)