import Word2Vec import gensim import numpy as np import pymysql.cursors # =========================================== # load data connection = pymysql.connect(user='******', password='******', database='GRE') cursor = connection.cursor() commit = "select * from GRES" cursor.execute(commit) Sentences = [each[1] for each in cursor.fetchall()] Sentences = Word2Vec.cleanText(Sentences) # =========================================== # Load model model_google = gensim.models.Word2Vec.load_word2vec_format( '../model/GoogleNews-vectors-negative300.bin', binary=True) # Word2Vec.Train_Wrod2VEc(Sentences, model_google) # =========================================== # Generalize words n_dim = 300 train_vectors = [ Word2Vec.buildWordVector(model_google, z, n_dim) for z in Sentences ] Word2Vec.storeVecs(train_vectors, '../vectors/google_vecs.txt')
import gensim import pymysql.cursors import Word2Vec # =========================================== # load data connection = pymysql.connect(user='******', password='******', database='GRE') cursor = connection.cursor() commit = "select * from GRES" cursor.execute(commit) Sentences = [each[1] for each in cursor.fetchall()] Sentences = Word2Vec.cleanText(Sentences) # =========================================== # Load model model_google = gensim.models.KeyedVectors.load_word2vec_format('../GoogleModel/GoogleNews-vectors-negative300.bin', binary=True) # Word2Vec.Train_Wrod2VEc(Sentences, model_google) # =========================================== # Generalize words n_dim = 300 train_vectors = [Word2Vec.buildWordVector(model_google, z, n_dim) for z in Sentences] Word2Vec.storeVecs(train_vectors, '../data for input/word_vecs.pkl')
import Word2Vec # =========================================== # load data connection = pymysql.connect(user='******', password='******', database='GRE') cursor = connection.cursor() commit = "select * from GRES2" cursor.execute(commit) Sentences = [each[1] for each in cursor.fetchall()] Sentences = Word2Vec.cleanText(Sentences) # =========================================== # Load model model_google = gensim.models.KeyedVectors.load_word2vec_format('../GoogleModel/GoogleNews-vectors-negative300.bin', binary=True) # Word2Vec.Train_Wrod2VEc(Sentences, model_google) # =========================================== # Generalize words n_dim = 300 train_vectors = [Word2Vec.buildWordVector(model_google, z, n_dim) for z in Sentences] Word2Vec.storeVecs(train_vectors, '../data for input1/q_vecs.pkl') commit = "select * from GRES2" cursor.execute(commit) Sentences = [each[2] for each in cursor.fetchall()] Sentences = Word2Vec.cleanText(Sentences) # Generalize words train_vectors = [Word2Vec.buildWordVector(model_google, z, n_dim) for z in Sentences] Word2Vec.storeVecs(train_vectors, '../data for input1/a_vecs.pkl')
import Word2Vec import gensim import numpy as np import pymysql.cursors # =========================================== # load data connection = pymysql.connect(user='******', password='******', database='GRE') cursor = connection.cursor() commit = "select * from GRES" cursor.execute(commit) Sentences = [each[1] for each in cursor.fetchall()] Sentences = Word2Vec.cleanText(Sentences) # =========================================== # Train model model_w2v = gensim.models.Word2Vec.load('../model/model_w2v') Word2Vec.Train_Wrod2VEc(Sentences, model_w2v) # =========================================== # Generalize words n_dim = 300 train_vectors = [ Word2Vec.buildWordVector(model_w2v, z, n_dim) for z in Sentences ] Word2Vec.storeVecs(train_vectors, '../model/w2v_vecs.txt')