Пример #1
0
class test_CurrentInjection(unittest.TestCase):
    """
    Test the implementation of the specialized projection
    'CurrentInjection'. Based on the example in the documentation.
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test. Adapted the example
        from documentation.
        """

        SimpleSpike = Neuron(equations="mp=g_exc", spike="mp >= 1.0", reset="")

        inp = Population(1, neuron=Neuron(equations="r=sin(t)"))
        out = Population(1, neuron=SimpleSpike)
        m = Monitor(out, "mp")

        proj = CurrentInjection(inp, out, 'exc')
        proj.connect_current()

        self.test_net = Network()
        self.test_net.add([inp, out, proj, m])
        self.test_net.compile(silent=True)

        self.output = self.test_net.get(out)
        self.m = self.test_net.get(m)

    def setUp(self):
        """
        Automatically called before each test method, basically to reset the network after every test.
        """
        self.test_net.reset()

    def test_compile(self):
        """
        Enforce compilation of the network.
        """
        pass

    def test_run_one_loop(self):
        self.test_net.simulate(11)

        rec_data = self.m.get("mp")[:, 0]
        # there is 1 dt delay between the input and output
        target = [0] + [sin(x) for x in range(10)]

        self.assertTrue(np.allclose(rec_data, target))
Пример #2
0
class test_CSRConnectivity(unittest.TestCase):
    """
    This class tests the functionality of the connectivity patterns within *Projections*.
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        self.test_net = Network()
        self.test_net.add([pop1, pop2, proj])
        self.test_net.compile(silent=True, debug_build=True, clean=True)

    def setUp(self):
        """
        In our *setUp()* function we call *reset()* to reset the network before every test.
        """
        self.test_net.reset()

    def test_all_to_all(self):
        """
        Tests the *all_to_all* connectivity pattern, in which every pre-synaptic neuron
        is connected to every post-synaptic neuron.

        We test correctness of ranks and weight values.
        """
        tmp = self.test_net.get(proj)

        #self.assertEqual(tmp.dendrite(3).rank, [0, 1, 2, 3, 4, 5, 6, 7, 8])
        self.assertTrue(
            numpy.allclose(tmp.dendrite(3).w,
                           numpy.ones((8, 1)) * 0.1))
Пример #3
0
class test_CSRConnectivity(unittest.TestCase):
    """
    This class tests the functionality of the connectivity patterns within *Projections*.
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        self.test_net = Network()
        self.test_net.add([pop1, pop2, proj])
        self.test_net.compile(silent=True, debug_build=True, clean=True)

    def setUp(self):
        """
        In our *setUp()* function we call *reset()* to reset the network before every test.
        """
        self.test_net.reset()

    def test_all_to_all(self):
        """
        Tests the *all_to_all* connectivity pattern, in which every pre-synaptic neuron
        is connected to every post-synaptic neuron.

        We test correctness of ranks and weight values.
        """
        tmp = self.test_net.get(proj)

        #self.assertEqual(tmp.dendrite(3).rank, [0, 1, 2, 3, 4, 5, 6, 7, 8])
        self.assertTrue(numpy.allclose(tmp.dendrite(3).w, numpy.ones((8, 1)) * 0.1))
Пример #4
0
    def setUpClass(cls):
        """
        Build up the network
        """
        simple_emit = Neuron(spike="t==1", )
        simple_recv = Neuron(equations="""
                g_exc1 = 0
                g_exc2 = 0
                g_exc3 = 0
            """,
                             spike="g_exc1>30")

        # simple in/out populations
        in_pop = Population(5, neuron=simple_emit)
        out_pop = Population(2, neuron=simple_recv)

        # create the projections for the test cases (TC)
        # TC: no delay
        proj = Projection(pre=in_pop, post=out_pop, target="exc1")
        proj.connect_all_to_all(weights=1.0, storage_format="csr")
        # TC: uniform delay
        proj_u = Projection(pre=in_pop, post=out_pop, target="exc2")
        proj_u.connect_all_to_all(weights=1.0,
                                  delays=2.0,
                                  storage_format="csr")
        # TC: non-uniform delay
        proj_nu = Projection(pre=in_pop, post=out_pop, target="exc3")
        proj_nu.connect_all_to_all(weights=1.0, delays=Uniform(2, 10))

        # Monitor to record the currents
        m = Monitor(out_pop, ["g_exc1", "g_exc2", "g_exc3"])

        # build network and store required object
        # instances
        net = Network()
        net.add([in_pop, out_pop, proj, proj_u, proj_nu, m])
        cls.test_net = net
        cls.test_net.compile(silent=True)
        cls.test_g_exc_m = net.get(m)
        cls.test_proj = net.get(proj_nu)
Пример #5
0
class test_SynapticAccess(unittest.TestCase):
    """
    ANNarchy support several global operations, there are always applied on
    variables of *Population* objects.

    This particular test focuses on the usage of them in synaptic learning rules
    (for instance covariance).
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        neuron = Neuron(parameters="""
                r=0
            """)

        cov = Synapse(parameters="""
                tau = 5000.0
            """,
                      equations="""
                tau * dw/dt = (pre.r - mean(pre.r) ) * (post.r - mean(post.r) )
            """)

        pre = Population(6, neuron)
        post = Population(1, neuron)
        proj = Projection(pre, post, "exc",
                          synapse=cov).connect_all_to_all(weights=1.0)

        self.test_net = Network()
        self.test_net.add([pre, post, proj])

        self.test_net.compile(silent=True)

        self.net_pop = self.test_net.get(post)

    @classmethod
    def tearDownClass(cls):
        del cls.test_net

    def test_compile(self):
        """
        Tests the result of *norm1(r)* for *pop*.
        """
        pass
Пример #6
0
class test_GlobalOps_1D(unittest.TestCase):
    """
    ANNarchy support several global operations, there are always applied on
    variables of *Population* objects. Currently the following methods
    are supported:

        * mean()
        * max()
        * min()
        * norm1()
        * norm2()

    They are used in the equations of our neuron definition.
    This particular test focuses on a one-dimensional *Population*.
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        neuron = Neuron(parameters="""
                r=0
            """,
                        equations="""
                mean_r = mean(r)
                max_r = max(r)
                min_r = min(r)
                l1 = norm1(r)
                l2 = norm2(r)
            """)

        pop = Population(6, neuron)

        self.test_net = Network()
        self.test_net.add([pop])
        self.test_net.compile(silent=True)

        self.net_pop = self.test_net.get(pop)

    @classmethod
    def tearDownClass(cls):
        del cls.test_net

    def setUp(self):
        """
        In our *setUp()* function we set the variable *r*.
        We also call *simulate()* to calculate mean/max/min.
        """
        # reset() set all variables to init value (default 0), which is
        # unfortunately meaningless for mean/max/min. So we set here some
        # better values
        self.net_pop.r = [2.0, 1.0, 0.0, -5.0, -3.0, -1.0]

        # 1st step: calculate mean/max/min and store in intermediate
        #           variables
        # 2nd step: write intermediate variables to accessible variables.
        self.test_net.simulate(2)

    def tearDown(self):
        """
        After each test we call *reset()* to reset the network.
        """
        self.test_net.reset()

    def test_get_mean_r(self):
        """
        Tests the result of *mean(r)* for *pop*.
        """
        self.assertTrue(numpy.allclose(self.net_pop.mean_r, -1.0))

    def test_get_max_r(self):
        """
        Tests the result of *max(r)* for *pop*.
        """
        self.assertTrue(numpy.allclose(self.net_pop.max_r, 2.0))

    def test_get_min_r(self):
        """
        Tests the result of *min(r)* for *pop*.
        """
        self.assertTrue(numpy.allclose(self.net_pop.min_r, -5.0))

    def test_get_l1_norm(self):
        """
        Tests the result of *norm1(r)* (L1 norm) for *pop*.
        """
        self.assertTrue(numpy.allclose(self.net_pop.l1, 12.0))

    def test_get_l2_norm(self):
        """
        Tests the result of *norm2(r)* (L2 norm) for *pop*.
        """
        # compute control value
        l2norm = numpy.linalg.norm(self.net_pop.r, ord=2)

        # test
        self.assertTrue(numpy.allclose(self.net_pop.l2, l2norm))
Пример #7
0
class test_GlobalOps_1D_Large(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        neuron = Neuron(parameters="""
                r=0
            """,
                        equations="""
                mean_r = mean(r)
                max_r = max(r)
                min_r = min(r)
                l1 = norm1(r)
                l2 = norm2(r)
            """)

        pop = Population(500, neuron)

        self.test_net = Network()
        self.test_net.add([pop])
        self.test_net.compile(silent=True)

        self.net_pop = self.test_net.get(pop)

    @classmethod
    def tearDownClass(cls):
        del cls.test_net

    def tearDown(self):
        """
        After each test we call *reset()* to reset the network.
        """
        self.test_net.reset()

    def test_mean_r(self):
        """
        """
        rand_val = numpy.random.random(500)
        self.net_pop.r = rand_val
        self.test_net.simulate(2)

        self.assertTrue(
            numpy.allclose(self.net_pop.mean_r, numpy.mean(rand_val)))

    def test_min_r(self):
        """
        """
        rand_val = numpy.random.random(500)
        self.net_pop.r = rand_val
        self.test_net.simulate(2)

        self.assertTrue(
            numpy.allclose(self.net_pop.min_r, numpy.amin(rand_val)))

    def test_max_r(self):
        """
        """
        rand_val = numpy.random.random(500)
        self.net_pop.r = rand_val
        self.test_net.simulate(2)

        self.assertTrue(
            numpy.allclose(self.net_pop.max_r, numpy.amax(rand_val)))
Пример #8
0
I.i_offset = 2.0

# monitoring
obs_e = Monitor(E, variables=['spike', 'v'], start=True)
obs_i = Monitor(I, variables=['spike', 'v'], start=True)

# simulation
############

# annarchy simulation
net = Network(everything=True)
net.compile()
net.simulate(duration=T)

# conversion to pyrates
rate_e = pyrates_from_annarchy(monitors=[net.get(obs_e)],
                               vars=['spike'],
                               pop_average=True)
rate_i = pyrates_from_annarchy(monitors=[net.get(obs_i)],
                               vars=['spike'],
                               pop_average=True)
v_e = pyrates_from_annarchy(monitors=[net.get(obs_e)],
                            vars=['v'],
                            pop_average=False)
v_i = pyrates_from_annarchy(monitors=[net.get(obs_i)],
                            vars=['v'],
                            pop_average=False)

# visualization
###############
Пример #9
0
class test_CustomFunc(unittest.TestCase):
    """
    This class tests the definition of custom functions, they
    can defined on three levels:

        * globally
        * within neurons
        * within synapses 
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        neuron = Neuron(
            equations = "r = transfer_function(sum(exc), 0.0)",
            functions = "transfer_function(x, t) = if x > t: if x > 2*t : (x - 2*t)^2 else: x - t else: 0."
        )

        neuron2 = Neuron(
            equations = "r = glob_pos(sum(exc))"
        )

        synapse = Synapse(
            equations="w += hebb(pre.r, post.r)",
            functions="hebb(x, y) = x * y"
        )

        pop = Population(10, neuron)
        pop2 = Population(10, neuron2)
        proj = Projection(pop, pop, 'exc', synapse).connect_all_to_all(1.0)

        self.test_net = Network()
        self.test_net.add([pop, pop2, proj])
        self.test_net.compile(silent=True)

        self.net_pop = self.test_net.get(pop)
        self.net_proj = self.test_net.get(proj)

    @classmethod
    def tearDownClass(cls):
        del cls.test_net

    def setUp(self):
        """
        In our *setUp()* function we call *reset()* to reset the network.
        """
        self.test_net.reset()

    def test_neuron(self):
        """
        Custom func defined within a neuron object, providing numpy.array data.
        """
        self.assertTrue(numpy.allclose(self.net_pop.transfer_function(numpy.array([0., 1., 2., 3.]), numpy.array([2., 2., 2., 2.])), [0, 0, 0, 1]))
        
    def test_neuron2(self):
        """
        Custom func defined within a neuron object, providing simple lists.
        """        
        self.assertTrue(numpy.allclose(self.net_pop.transfer_function([0., 1., 2., 3.], [2., 2., 2., 2.]), [0, 0, 0, 1]))

    def test_synapse(self):
        """
        Custom func defined within a synapse object, providing simple lists.
        """
        self.assertTrue(numpy.allclose(self.net_proj.hebb(numpy.array([0., 1., 2., 3.]), numpy.array([0., 1., 2., 3.])), [0, 1, 4, 9]))

    def test_synapse2(self):
        """
        Custom func defined within a synapse object, providing simple lists.
        """
        self.assertTrue(numpy.allclose(self.net_proj.hebb([0., 1., 2., 3.], [0., 1., 2., 3.]), [0, 1, 4, 9]))
Пример #10
0
class test_BuiltinFunctions(unittest.TestCase):
    """
    Test the correct evaluation of builtin functions
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        BuiltinFuncs = Neuron(parameters="""
                base = 2.0
            """,
                              equations="""
                r = modulo(t,3)
                pr = power(base,3)
                clip_below = clip(-2, -1, 1)
                clip_within = clip(0, -1, 1)
                clip_above = clip(2, -1, 1)
            """)

        pop1 = Population(1, BuiltinFuncs)
        mon = Monitor(pop1,
                      ['r', 'pr', 'clip_below', 'clip_within', 'clip_above'])

        self.test_net = Network()
        self.test_net.add([pop1, mon])
        self.test_net.compile(silent=True)

        self.test_mon = self.test_net.get(mon)

    @classmethod
    def tearDownClass(cls):
        """
        All tests of this class are done. We can destroy the network.
        """
        del cls.test_net

    def setUp(self):
        """
        Automatically called before each test method, basically to reset the network after every test.
        """
        self.test_net.reset()

    def tearDown(self):
        """
        Since all tests are independent, after every test we use the *get()* method for every monotor to clear all recordings.
        """
        self.test_mon.get()

    def test_modulo(self):
        """
        Test modulo function.
        """
        self.test_net.simulate(10)
        data_m = self.test_mon.get('r')
        self.assertTrue(
            np.allclose(data_m, [[0.0], [1.0], [2.0], [0.0], [1.0], [2.0],
                                 [0.0], [1.0], [2.0], [0.0]]))

    def test_integer_power(self):
        """
        Test integer power function.
        """
        self.test_net.simulate(1)
        data_m = self.test_mon.get('pr')
        self.assertTrue(np.allclose(data_m, [[8.0]]))

    def test_clip_below(self):
        """
        The clip(x, a, b) method ensures that x is within range [a,b]. This tests validates that x = -2 is clipped to -1
        """
        data_clip_below = self.test_mon.get('clip_below')
        self.assertTrue(np.allclose(data_clip_below, [[-1.0]]))

    def test_clip_within(self):
        """
        The clip(x, a, b) method ensures that x is within range [a,b]. This tests validates that x = 0 retains.
        """
        data_clip_within = self.test_mon.get('clip_within')
        self.assertTrue(np.allclose(data_clip_within, [[0.0]]))

    def test_clip_above(self):
        """
        The clip(x, a, b) method ensures that x is within range [a,b]. This tests validates that x = 2 is clipped to 1.
        """
        data_clip_above = self.test_mon.get('clip_above')
        self.assertTrue(np.allclose(data_clip_above, [[1.0]]))
Пример #11
0
class test_Dendrite(unittest.TestCase):
    """
    This class tests the *Dendrite* object, which gathers all synapses
    belonging to a post-synaptic neuron in a *Projection*:

        * access to parameters
        * the *rank* method
        * the *size* method
    """
    @classmethod
    def setUpClass(self):
        """
        Compile the network for this test
        """
        neuron = Neuron(parameters="tau = 10", equations="r += 1/tau * t")

        neuron2 = Neuron(parameters="tau = 10: population",
                         equations="r += 1/tau * t: init = 1.0")

        Oja = Synapse(parameters="""
                tau = 5000.0 : postsynaptic
                alpha = 8.0
            """,
                      equations="""
                tau * dw/dt = pre.r * post.r - alpha * post.r^2 * w
            """)

        pop1 = Population(5, neuron)
        pop2 = Population(8, neuron2)

        proj = Projection(pre=pop1, post=pop2, target="exc", synapse=Oja)

        proj.connect_all_to_all(weights=1.0)

        self.test_net = Network()
        self.test_net.add([pop1, pop2, proj])
        self.test_net.compile(silent=True)

        self.net_proj = self.test_net.get(proj)

    @classmethod
    def tearDownClass(cls):
        del cls.test_net

    def setUp(self):
        """
        In our *setUp()* function we call *reset()* to reset the network.
        """
        self.test_net.reset()

    def test_none(self):
        """
        If a non-existent *Dendrite* is accessed, an error should be thrown.
        This is tested here.
        """
        from ANNarchy.core.Global import ANNarchyException
        with self.assertRaises(ANNarchyException) as cm:
            d = self.net_proj.dendrite(14)
        # self.assertEqual(cm.exception.code, 1)

    def test_pre_ranks(self):
        """
        Tests the *pre_ranks* method, which returns the ranks of the
        pre-synaptic neurons belonging to the accessed *Dendrite*.
        """
        self.assertEqual(self.net_proj.dendrite(5).pre_ranks, [0, 1, 2, 3, 4])

    def test_dendrite_size(self):
        """
        Tests the *size* method, which returns the number of pre-synaptic
        neurons belonging to the accessed *Dendrite*.
        """
        self.assertEqual(self.net_proj.dendrite(3).size, 5)

    def test_get_dendrite_tau(self):
        """
        Tests the direct access of the parameter *tau* of a *Dendrite*.
        """
        self.assertTrue(numpy.allclose(self.net_proj.dendrite(1).tau, 5000.0))

    def test_get_dendrite_alpha(self):
        """
        Tests the direct access of the variable *alpha* of a *Dendrite*.
        """
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(0).alpha, [8.0, 8.0, 8.0, 8.0, 8.0]))

    def test_get_dendrite_weights(self):
        """
        Tests the direct access of the parameter *w* (weights) of a *Dendrite*.
        """
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(7).w, [1.0, 1.0, 1.0, 1.0, 1.0]))

    def test_set_tau(self):
        """
        Tests the setting of the parameter *tau* for the whole *Projection* through a single value.
        """
        self.net_proj.tau = 6000.0
        self.assertTrue(numpy.allclose(self.net_proj.dendrite(0).tau, 6000.0))

    def test_set_tau_2(self):
        """
        Tests the setting of the parameter *tau* for a single dendrite with a single value.
        """
        old_value = self.net_proj.tau
        old_value[1] = 7000.0

        self.net_proj.dendrite(1).tau = 7000.0
        self.assertTrue(numpy.allclose(self.net_proj.dendrite(1).tau, 7000.0))
        self.assertTrue(numpy.allclose(self.net_proj.tau, old_value))

    def test_set_alpha(self):
        """
        Tests the setting of the parameter *alpha* of a *Dendrite*.
        """
        self.net_proj.dendrite(4).alpha = 9.0
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(4).alpha, [9.0, 9.0, 9.0, 9.0, 9.0]))

    def test_set_alpha_2(self):
        """
        Tests the setting of the parameter *alpha* of a specific synapse in a *Dendrite*.
        """
        self.net_proj.dendrite(4)[1].alpha = 10.0
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(4).alpha, [9.0, 10.0, 9.0, 9.0, 9.0]))

    def test_set_weights(self):
        """
        Tests the setting of the parameter *w* (weights) of a *Dendrite*.
        """
        self.net_proj.dendrite(6).w = 2.0
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(6).w, [2.0, 2.0, 2.0, 2.0, 2.0]))

    def test_set_weights_2(self):
        """
        Tests the setting of the parameter *w* (weights) of a specific synapse in a *Dendrite*.
        """
        self.net_proj.dendrite(6)[2].w = 3.0
        self.assertTrue(
            numpy.allclose(
                self.net_proj.dendrite(6).w, [2.0, 2.0, 3.0, 2.0, 2.0]))

    def test_set_with_dict(self):
        """
        Test the setting of attributes using a dictionary.
        """
        new_value = self.net_proj.tau
        new_value[1] = 7000.0

        update = dict({'tau': 7000})
        self.net_proj.dendrite(1).set(update)
        self.assertTrue(numpy.allclose(self.net_proj.tau, new_value))

    def test_get_by_name(self):
        """
        Test the retrieval of an attribute by the name.
        """
        val = self.net_proj.dendrite(1).get('tau')
        self.assertTrue(numpy.allclose(val, 5000.0))