n_data = 50 # true kappa kappa_true = 0.3 # true noise added to data sig_true = 2.0 # deterministic parameters source_deterministic = 10.0 beta_deterministic = 2.0 bc_left_deterministic = 0.5 bc_right_deterministic = 0.0 # clean data data_true = AdvDiff_solve(beta_deterministic, kappa_true, source_deterministic, bc_left_deterministic, bc_right_deterministic) # random noise noise_true = np.random.normal(0, sig_true, n_data) # noisy data data_experiment = data_true + noise_true def ln_prior(params): # source : [-10, 10] # sigma : [0, 10] nrv = len(params0) params = np.reshape(params, [1, nrv]) # print(params) kappa = params[0, 0] ln_prior_val = 0
def computational_model(beta, source, bc_left, bc_right, params): return (AdvDiff_solve(beta, params[0, 0], source, bc_left, bc_right))
def computational_model(beta, kappa, bc_left, bc_right, params): return (AdvDiff_solve(beta, kappa, params[0], bc_left, bc_right))