Пример #1
0
def test_linear_sarsa(iterations=1000, mlambda=None, n0=100, avg_it=100):
    print "\n-------------------"
    print "TD control Sarsa, with Linear function approximation"
    print "run for n. iterations: "+str(iterations)
    print "plot graph mse vs episodes for lambda equal 0 and lambda equal 1"
    print "list (std output) win percentage for values of lambda 0, 0.1, 0.2, ..., 0.9, 1"
    monte_carlo_Q = pickle.load(open("Data/Qval_func_1000000_MC_control.pkl", "rb"))
    n_elements = monte_carlo_Q.shape[0]*monte_carlo_Q.shape[1]*2
    mse = []
    if not isinstance(mlambda,list):
        # if no value is passed for lambda, default 0.5
        l = 0.5 if mlambda==None else mlambda
        # learn
        game = Environment()
        agent = Agent(game, n0)
        agent.TD_control_linear(iterations,l,avg_it)
        agent.show_statevalue_function()
    else:
        # test each value of lambda
        for l in mlambda:
            game = Environment()
            agent = Agent(game, n0)
            l_mse = agent.TD_control_linear(iterations,l,avg_it)
            mse.append(l_mse)
        plt.plot(mlambda,mse)
        plt.ylabel('mse')
        plt.show()
Пример #2
0
def test_monte_carlo(iterations=1000000, n0=100):
    print "\n-------------------"
    print "Monte Carlo control"
    print "run for n. iterations: "+str(iterations)
    print "win percentage: "
    # learn
    game = Environment()
    agent = Agent(game, n0)
    agent.MC_control(iterations)
    # plot and store
    agent.show_statevalue_function()
    agent.store_Qvalue_function()
Пример #3
0
def test_linear_sarsa(iterations=1000, mlambda=None, n0=100, avg_it=100):
    print "\n-------------------"
    print "TD control Sarsa, with Linear function approximation"
    print "run for n. iterations: " + str(iterations)
    print "plot graph mse vs episodes for lambda equal 0 and lambda equal 1"
    print "list (std output) win percentage for values of lambda 0, 0.1, 0.2, ..., 0.9, 1"
    monte_carlo_Q = pickle.load(
        open("Data/Qval_func_1000000_MC_control.pkl", "rb"))
    n_elements = monte_carlo_Q.shape[0] * monte_carlo_Q.shape[1] * 2
    mse = []
    if not isinstance(mlambda, list):
        # if no value is passed for lambda, default 0.5
        l = 0.5 if mlambda == None else mlambda
        # learn
        game = Environment()
        agent = Agent(game, n0)
        agent.TD_control_linear(iterations, l, avg_it)
        agent.show_statevalue_function()
    else:
        # test each value of lambda
        for l in mlambda:
            game = Environment()
            agent = Agent(game, n0)
            l_mse = agent.TD_control_linear(iterations, l, avg_it)
            mse.append(l_mse)
        plt.plot(mlambda, mse)
        plt.ylabel('mse')
        plt.show()
Пример #4
0
    def reset(self, training=True):

        # Generate new obstacles
        self.generate_obstacles(self.n_rows, self.n_cols)

        # Generate agents positions
        team_agents, team_opponents = self.generate_random_agents(
            n_agents=self.n_agents,
            n_opponents=self.n_opponents,
            rows=self.n_rows,
            cols=self.n_cols,
            cluster=True)

        # Instantiate agents
        self.agents = [Agent(pos, i == 0) for i, pos in enumerate(team_agents)]
        self.opponents = [DummyAgent(position=pos) for pos in team_opponents]

        # Assign training and target nets to agents
        for a in self.agents:
            if a.training:
                a.brain = self.training_net
            else:
                a.brain = self.target_net

        # Generate all allowed moves for each position of the board
        self.allowed_moves_per_position = self.create_allowed_moves()
        self.training_net.training = training
Пример #5
0
def test_presence_request_server_response():
    sensor1 = Sensor('A222', 21.02, 'second', 'accelerometr')
    sensor2 = Sensor('B333', 56.0003, 'meter', 'mleko')
    agent = Agent(1, 'xxx', 'rrr', 'yyy', [sensor1, sensor2])
    response = log.presence_request(agent, 'mleko', None, None, 'SL', None,
                                    None)
    assert response.status != 404 and response.status != 500
Пример #6
0
def test__presence_request_json():
    agent = Agent(1, 'Adam1', 'Testowy agent', 'agent_mobilny', [])

    result = log._presence_request_json(agent,
                                        res('logger\\precence_type\\start'),
                                        protocol=None,
                                        request_type=None,
                                        language='SL',
                                        action_receiver_id=3,
                                        action_sender_id=None)
    json_data = json.loads(result)

    assert json_data['content'] == 'presenceStatus:start_presence,agent:Adam1'
Пример #7
0
def test_monte_carlo(iterations=1000000, n0=100):
    print "\n-------------------"
    print "Monte Carlo control"
    print "run for n. iterations: " + str(iterations)
    print "win percentage: "
    # learn
    game = Environment()
    agent = Agent(game, n0)
    agent.MC_control(iterations)
    # plot and store
    agent.show_statevalue_function()
    agent.store_Qvalue_function()
Пример #8
0
def test__agent_registration_json_agent_without_sensors():
    agent = Agent(1, 'Adam1', 'Testowy agent', 'agent_mobilny', [])

    result = log._agent_registration_json(agent,
                                          protocol=None,
                                          request_type=None,
                                          language='SL',
                                          action_receiver_id=3,
                                          action_sender_id=None)
    json_data = json.loads(result)
    assert json_data[
        'content'] == 'agentName:Adam1,agentDescription:Testowy agent,agentType:agent_mobilny,sensors:'
    assert json_data['action_protocol'] is None
    assert json_data['action_requesttype'] is None
    assert json_data['language'] == 'SL'
    assert json_data['action_receiver']['id'] == 3
    assert json_data['action_sender'] is None
Пример #9
0
    def __init__(self,
                 n_rows,
                 n_cols,
                 n_agents,
                 n_opponents,
                 gcr_weight=0.5,
                 lcr_weight=0.5,
                 rr_weight=0.5):
        self.n_rows = n_rows
        self.n_cols = n_cols
        self.n_agents = n_agents
        self.n_opponents = n_opponents

        self.obstacles = None
        self.allowed_moves_per_position = None
        self.generate_obstacles(n_rows, n_cols)
        team_agents, team_opponents = self.generate_random_agents(
            n_agents=n_agents,
            n_opponents=n_opponents,
            rows=n_rows,
            cols=n_cols,
            cluster=True)

        self.agents = [Agent(pos, i == 0) for i, pos in enumerate(team_agents)]

        self.training_net = Brain(True)
        self.target_net = Brain(False)

        for a in self.agents:
            if a.training:
                a.brain = self.training_net
            else:
                a.brain = self.target_net

        self.opponents = [DummyAgent(position=pos) for pos in team_opponents]
        self.global_capture_weight = gcr_weight
        self.local_capture_weight = gcr_weight
        self.reachability_weight = rr_weight
        self.training_ate_weight = lcr_weight
Пример #10
0
def test__agent_registration_json_agent_with_sensors():
    agent = Agent(1, 'Adam1', 'Testowy agent', 'agent_mobilny', [])
    sensor1 = Sensor('A222', 21.02, 'second', 'accelerometr')
    sensor2 = Sensor('B333', 56.0003, 'meter', 'mleko')
    agent.sensor_list.append(sensor1)
    agent.sensor_list.append(sensor2)

    result = log._agent_registration_json(agent,
                                          protocol=None,
                                          request_type=None,
                                          language='SL',
                                          action_receiver_id=None,
                                          action_sender_id=1)
    json_data = json.loads(result)
    assert json_data['content'] == 'agentName:Adam1,agentDescription:Testowy agent,agentType:agent_mobilny,' \
                                    + 'sensors:sensorName-A222 sensorAccuracy-21.02 ' \
                                    + 'unitType-second sensorType-accelerometr;' \
                                    + 'sensorName-B333 sensorAccuracy-56.0003 unitType-meter sensorType-mleko'
    assert json_data['action_protocol'] is None
    assert json_data['action_requesttype'] is None
    assert json_data['language'] == 'SL'
    assert json_data['action_receiver'] is None
    assert json_data['action_sender']['id'] == 1
Пример #11
0
def test_agent_registration_server_response_empty_strings():
    agent = Agent(1, '', '', '', [])
    response = log.agent_registration(agent, None, None, 'SL', None, None)
    assert response.status != 404 and response.status != 500
Пример #12
0
def test_presence_request_server_response_empty_strings():
    agent = Agent(1, '', '', '', [])
    response = log.presence_request(agent, 'mleko', None, None, 'SL', None,
                                    None)
    assert response.status != 404 and response.status != 500
Пример #13
0
def test_td_control(iter=50000):
    lambdas = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
    for l in lambdas:
        agent = Agent()
        agent.TD_control(iter, l)
        agent.plot_state()
Пример #14
0
def test_mc_control(iter=50000, n0=100):
    agent = Agent()
    agent.MC_control(iter, n0)
    agent.plot_state()
Пример #15
0
def test_td_control_linear_app(iter=50000):
    lambdas = [0.0, 1.0]
    for l in lambdas:
        agent = Agent()
        agent.TD_control_linear_app(iter, 0.9)
        agent.plot_state()
def get_agents():
    return agent


def perform_agent(name, method: str):
    getattr(agent, method)()


def perform_recorder(name, method: str):
    recorder = [recorder for recorder in recorders if recorder.name == name][0]
    getattr(recorder, method)()


recorders = create_recorders()
agent = Agent("Main Agent", recorders)

# agent.start()
#
# agent.stop()

remote_api_cfg = cfg.get_configuration_of('remote_api_config')

api_server = RemoteAPIServer(remote_api_cfg.get('ip'),
                             remote_api_cfg.get('port'))
logging.debug("Create RemoteAPIServer")
api_server.register_function(get_agents)
api_server.register_function(perform_agent)
api_server.register_function(perform_recorder)
api_server.start_listen()