def Entropy_analysis(parallel_inputs):
    t0 = time.time()

    # Unpack the parallel input
    x = parallel_inputs['x']  # Input EEG segment
    r = parallel_inputs['r']  # Tolerance value
    emb_dim = parallel_inputs['emb_dim']  # Embedding dimension

    ### Perform entropy analysis
    ApEn = measures.ApEn(x, emb_dim, r)

    # Sample Entropy
    SampEn = measures.SampEn(x, emb_dim, r)

    # RangeEn-A (Modified Approximate Entropy)
    RangeEn_A = measures.RangeEn_A(x, emb_dim, r)

    # RangeEn-B (Modified Sample Entropy)
    RangeEn_B = measures.RangeEn_B(x, emb_dim, r)

    print('Entropy analysis of the EEG segment was finished! Elapsed time: ' +
          str(time.time() - t0))

    return ApEn, SampEn, RangeEn_A, RangeEn_B
Пример #2
0
          4 * sim_data.Uniform_noise(int(N_single / 5)),
          sim_data.Uniform_noise(int(N_single / 5)))
    x3 = np.concatenate(x3)

    #### Perform entropy analysis
    ApEn_r = np.zeros((3, N_r))
    SampEn_r = np.zeros((3, N_r))
    RangeEn_A_r = np.zeros((3, N_r))
    RangeEn_B_r = np.zeros((3, N_r))

    for n_r in range(0, N_r):

        t0 = time.time()

        # Approximate Entropy
        ApEn_r[0, n_r] = measures.ApEn(x1, m_single, r_span[0, n_r])
        ApEn_r[1, n_r] = measures.ApEn(x2, m_single, r_span[0, n_r])
        ApEn_r[2, n_r] = measures.ApEn(x3 / np.std(x3), m_single, r_span[0,
                                                                         n_r])

        # Sample Entropy
        SampEn_r[0, n_r] = measures.SampEn(x1, m_single, r_span[0, n_r])
        SampEn_r[1, n_r] = measures.SampEn(x2, m_single, r_span[0, n_r])
        SampEn_r[2, n_r] = measures.SampEn(x3 / np.std(x3), m_single,
                                           r_span[0, n_r])

        # RangeEn-A (Modified Approximate Entropy)
        RangeEn_A_r[0, n_r] = measures.RangeEn_A(x1, m_single, r_span[0, n_r])
        RangeEn_A_r[1, n_r] = measures.RangeEn_A(x2, m_single, r_span[0, n_r])
        RangeEn_A_r[2, n_r] = measures.RangeEn_A(x3, m_single, r_span[0, n_r])
Пример #3
0
                x = sim_data.Pink_noise(N_single)
            elif (sig_type == 'brown_noise'):
                x = sim_data.fBm(int(N_single), 0.5)
            elif (sig_type == 'fBm025'):
                x = sim_data.fBm(int(N_single), 0.25)
            elif (sig_type == 'MIX'):
                x = sim_data.MIX(int(N_single), 0, 50)
            elif (sig_type == 'logistic_map'):
                x = np.array(sim_data.Logistic_map(N_single))
            elif (sig_type == 'henon_map'):
                x, y = sim_data.Henon_map(N_single)
            elif (sig_type == 'roessler_osc'):
                x, y, z = sim_data.Roessler_osc(N_single, t1=0, t2=50)

            # Approximate Entropy
            ApEn_r[n_surr, n_r] = measures.ApEn(x, m_single, r_span[0, n_r])

            # Sample Entropy
            SampEn_r[n_surr, n_r] = measures.SampEn(x, m_single, r_span[0,
                                                                        n_r])

            # RangeEn-A (Modified Approximate Entropy)
            RangeEn_A_r[n_surr,
                        n_r] = measures.RangeEn_A(x, m_single, r_span[0, n_r])

            # RangeEn-B (Modified Sample Entropy)
            RangeEn_B_r[n_surr,
                        n_r] = measures.RangeEn_B(x, m_single, r_span[0, n_r])

        ##### Save the entropy values in an external .npz file
        np.savez(output_filename,
            for n_h in range(0, N_H):

                H = H_span[0, n_h]

                # Simulate the input signal (fBm)
                x = sim_data.fLm(alpha, H, int(n_nextpow2), dim=1, nm=1)
                x = x[0:N_single]

                if (STD_correction == 'yes'):
                    x = x / np.std(x)

                t0 = time.time()
                for n_r in range(0, N_r):

                    # Approximate Entropy
                    ApEn_h[n_h, n_r] = measures.ApEn(x, m_single, r_span[0,
                                                                         n_r])

                    # Sample Entropy
                    SampEn_h[n_h,
                             n_r] = measures.SampEn(x, m_single, r_span[0,
                                                                        n_r])

                    # RangeEn-A (Modified Approximate Entropy)
                    RangeEn_A_h[n_h, n_r] = measures.RangeEn_A(
                        x, m_single, r_span[0, n_r])

                    # RangeEn-B (Modified Sample Entropy)
                    RangeEn_B_h[n_h, n_r] = measures.RangeEn_B(
                        x, m_single, r_span[0, n_r])

                    ##### Save the entropy values in an external .npz file
Пример #5
0
    t00         = time.time()
    for n_N in range(0,N_N):

        t0 = time.time()
        for n_surr in range(0, N_surr):

            # Simulate the input signal
            if(sig_type=='white_noise'):
                x = sim_data.white_noise(N_span[0, n_N])
            elif (sig_type == 'pink_noise'):
                x = sim_data.Pink_noise(N_span[0, n_N])
            elif (sig_type == 'brown_noise'):
                x = sim_data.fBm(int(N_span[0, n_N]), 0.5)

            # Approximate Entropy
            ApEn_N[n_surr, n_N]      = measures.ApEn(x, m_single, r_single)

            # Sample Entropy
            SampEn_N[n_surr, n_N]    = measures.SampEn(x, m_single, r_single)

            # RangeEn-A (Modified Approximate Entropy)
            RangeEn_A_N[n_surr, n_N] = measures.RangeEn_A(x, m_single, r_single)

            # RangeEn-B (Modified Sample Entropy)
            RangeEn_B_N[n_surr, n_N] = measures.RangeEn_B(x, m_single, r_single)

        ##### Save the entropy values in an external .npz file
        np.savez(output_filename, SampEn_N=SampEn_N, ApEn_N=ApEn_N, RangeEn_B_N=RangeEn_B_N, RangeEn_A_N=RangeEn_A_N)

        print('Length ' + str(N_span[0, n_N]) + ', elapsed time = ' + str(time.time()-t0))