Пример #1
0
def get_stock_basic_parameters(code, Cycle='D', period=480):
    '''
    :param code:股票代码
    :param Cycle: 分析周期
    :param period: 分析的时间周期
    :return:返回指标列表:
    ['EMADir','SMADir','MACDDir','SMALight','EMALight','valuerel','ATRWz','ATRRatio',
    'oneATR','twoATR','threeATR','moneATR','mtwoATR','mthreeATR','position','curup',
    'curdown']
    '''
    code = DP.codeType(code)
    print(code)
    dfdata = ts.get_k_data(code, ktype=Cycle)
    if (len(dfdata) < 60):
        return None
    closes = dfdata['close'].values
    dates = dfdata['date'].values
    EMADir = ta.EMA_Direction(dates, closes)
    SMADir = ta.SMA_Direction(dates, closes)
    MACDDir = ta.MACD_Direction(dates, closes)
    SMALight = Triple.ImpluseLight(SMADir, MACDDir)
    EMALight = Triple.ImpluseLight(EMADir, MACDDir)

    valuerel = ta.SMAValueZone_GX(dates, closes)

    highs = dfdata['high'].values
    lows = dfdata['low'].values
    curatr = ta.last_atr(dates, closes, highs, lows)
    absdis, perdis, maprice = ta.curdistosma(closes, 20)
    ATRWz = absdis / curatr
    ATRRatio = absdis / maprice
    oneATR = maprice + curatr
    twoATR = maprice + 2 * curatr
    threeATR = maprice + 3 * curatr
    moneATR = maprice - curatr
    mtwoATR = maprice - 2 * curatr
    mthreeATR = maprice - 3 * curatr

    if (len(closes) > period):
        closes = closes[-period:]
    position, curup, curdown = Statistical.position_in_period(closes)

    valuelist = [
        EMADir, SMADir, MACDDir, SMALight, EMALight, valuerel, ATRWz, ATRRatio,
        oneATR, twoATR, threeATR, moneATR, mtwoATR, mthreeATR, position, curup,
        curdown
    ]
    namelist = [
        'EMADir', 'SMADir', 'MACDDir', 'SMALight', 'EMALight', 'valuerel',
        'ATRWz', 'ATRRatio', 'oneATR', 'twoATR', 'threeATR', 'moneATR',
        'mtwoATR', 'mthreeATR', 'position', 'curup', 'curdown'
    ]
    colnames = []
    for ele in namelist:
        name = Cycle + '-' + ele
        colnames.append(name)
    s = pd.Series(valuelist, index=colnames)
    return s
Пример #2
0
def get_common_parameters(code, tradeCycle):
    from Analyze import Technical as ta
    from Strategies import False_Breakout_Divergence as FB
    smaperiod = 20
    colNames = [
        'code', 'tradeCycle', 'curclose', 'sma', 'ATR', 'ATRRatio', 'ATRWZ',
        'ImpLight', 'upchannel', 'downchannel', 'valueWZ', 'rewardratio'
    ]
    dfdata = ts.get_k_data(code, ktype=tradeCycle)
    if (len(dfdata) < 120):  # 剔除交易时间少于120天的个股
        print('No Enough Trading Days')
    dates = dfdata['date'].values
    closes = dfdata['close'].values
    highs = dfdata['high'].values
    lows = dfdata['low'].values
    macddiclist = ta.cal_macd(dates, closes)

    macd, dif, dea = get_macd_list(macddiclist)

    absdis, perdis, maprice = ta.curdistosma(closes, smaperiod)
    curATR = ta.last_atr(dates, closes, highs, lows)
    upchannel = maprice + 2 * curATR
    downchannel = maprice - 2 * curATR

    curClose = closes[-1]
    ATRRatio = curATR / curClose
    ATRWZ = absdis / curATR

    smadir = ta.SMA_Direction(dates, closes)
    macddir = ta.MACD_Direction(dates, closes)
    ImpLight = FB.ImpluseLight(smadir, macddir)

    rewardratio = (upchannel - curClose) * 100 / curClose
    value_re = ta.SMAValueZone_GX(dates, closes)

    curATR = round(curATR, 2)
    ATRRatio = round(ATRRatio * 100, 2)
    rewardratio = round(rewardratio, 2)
    ATRWZ = round(ATRWZ, 2)
    maprice = round(maprice, 2)
    upchannel = round(upchannel, 2)
    downchannel = round(downchannel, 2)
    s = pd.Series([
        code, tradeCycle, curClose, maprice, curATR, ATRRatio, ATRWZ, ImpLight,
        upchannel, downchannel, value_re, rewardratio
    ],
                  index=colNames)

    return s
def ImpluseScore(dates, closes):
    '''
    :param dates:日期
    :param closes: 收盘价
    :return: 脉冲评分:红0分,绿1分,蓝2分
    '''
    smadir = ta.SMA_Direction(dates, closes)
    macddir = ta.MACD_Direction(dates, closes)
    lightcolor = ImpluseLight(smadir, macddir)
    if (lightcolor == 'Red'):
        score = 0
    elif (lightcolor == 'green'):
        score = 1
    else:
        score = 2
    return score
Пример #4
0
def VecCycleIndicators(stockcode = None,Cycle = 'D'):
    dftotal = ts.get_k_data(stockcode, ktype=Cycle)
    totalrows = len(dftotal)
    if(totalrows <100):
        print('Insufficiennt Data for Analyze'
        )
        return None
    startIndex = 0

    colNames = ['date',Cycle+'-smadir',Cycle+'-macddir',Cycle+'-light',Cycle+'-bandratio',
                Cycle+'-upband',Cycle+'-lowband',Cycle+'-valuerel',Cycle+'-rsi']
    dfIndicator = DataFrame([],columns=colNames)

    while(startIndex + 100 <= totalrows):
        print(startIndex)
        df = dftotal[:startIndex + 100]
        dates = df['date'].values
        closes = df['close'].values
        lows = df['low'].values
        highs = df['high'].values

        date = dates[-1]

        smadir = ta.SMA_Direction(dates, closes)
        macddir = ta.MACD_Direction(dates, closes)
        lightcolor = trpscr.ImpluseLight(smadir,macddir)
        rsi = ta.get_cur_rsi(dates,closes)

        uppenetrationCounter, downpenetrationCounter, bandratio, upband, lowband \
            = ta.envelop_ratio(dates, highs, lows, closes)
        value_re = ta.SMAValueZone_GX(dates, closes)

        s = Series([date,smadir,macddir,lightcolor,bandratio,upband,lowband,value_re,rsi],index = colNames)
        dfIndicator = dfIndicator.append(s,ignore_index=True)
        startIndex += 1

    FileName = stockcode + Cycle +'.csv'
    FilePath = os.path.join(DataRoot,FileName)
    dfIndicator.to_csv(FilePath)
    return dfIndicator
Пример #5
0
def sz50Daily():
    codelist = DI.get_stockcode_list('sz50')
    colNames = [
        'stockcode', 'smadir', 'uppenetrationCounter',
        'downpenetrationCounter', 'macddir', 'bandratio', 'upband', 'lowband',
        'value_re'
    ]
    filterdf = DataFrame([], columns=colNames)
    filepath = os.path.join(os.getcwd(), 'data', 'list')

    for stockcode in codelist['code']:

        df = ts.get_k_data(stockcode, ktype='D')

        dates = df['date'].values
        closes = df['close'].values
        lows = df['low'].values
        highs = df['high'].values

        smadir = ta.SMA_Direction(dates, closes)

        macddir = ta.MACD_Direction(dates, closes)

        uppenetrationCounter, downpenetrationCounter, bandratio, upband, lowband\
            = ta.envelop_ratio(dates,highs,lows,closes)
        #print(stockcode,uppenetrationCounter, downpenetrationCounter, bandratio, upband, lowband)

        value_re = ta.SMAValueZone_GX(dates, closes)

        s = Series([
            stockcode, smadir, uppenetrationCounter, downpenetrationCounter,
            macddir, bandratio, upband, lowband, value_re
        ],
                   index=colNames)
        filterdf = filterdf.append(s, ignore_index=True)

    filterdf.to_csv(filepath + '.csv')