def __init__(self, probability: float, black_probability: float = 0, white_probability: float = 0): Operation.__init__(self, probability) self.black_offset = black_probability self.white_offset = 1 - white_probability
def __init__(self, probability, min_scale_x, max_scale_x, min_scale_y, max_scale_y, keep_size=False): """ The scale is randomised in magnitude, in between :attr:`min_scale_x` and :attr:`max_scale_x` or :attr:`min_scale_y` to :attr:`max_scale_y`. :param probability: Controls the probability that the operation is performed when it is invoked in the pipeline. :param min_scale_x: The minimum scale in x direction. :param max_scale_x: The maximum scale in x direction. :param min_scale_y: The minimum scale in y direction. :param max_scale_y: The maximum scale in y direction. :param keepSize: Indicates whether to crop the rescaled image to original size. :type probability: Float :type min_scale_x: Float :type max_scale_x: Float :type min_scale_y: Float :type max_scale_y: Float :type max_scale_y: Bool """ Operation.__init__(self, probability) self.min_scale_x = min_scale_x self.max_scale_x = max_scale_x self.min_scale_y = min_scale_y self.max_scale_y = max_scale_y self.keep_size = keep_size
def __init__(self, probability, intensity_low=0.7, intensity_high=1.2): Operation.__init__(self, probability) # Init classes variables with default values # Default values treshold intent to create a optimal range # Imagens cant be too dark or too brigher self.intensity_low = intensity_low self.intensity_high = intensity_high
def __init__(self, probability: float, max_filter_size: int = 7, blur_size: int = 3): Operation.__init__(self, probability) self.max_filter_size = max_filter_size self.blur_size = blur_size
def __init__(self, probability: float, min_size: int = 0, max_size: int = 9, min_blend_range: int = 0, max_blend_range: int = 9): Operation.__init__(self, probability) self.size = (min_size, max_size) self.blend_range = (min_blend_range, max_blend_range)
def __init__(self, probability, max_erosion, max_dilation, pixels_mean=None): Operation.__init__(self, probability) self.max_erosion = max_erosion self.max_dilation = max_dilation self.pixels_mean = pixels_mean
def __init__(self, probability, blur_type="gaussian", radius=(0, 1), fixed_radius=None): Operation.__init__(self, probability) self.blur_type = blur_type self.radius = radius self.fixed_radius = fixed_radius
def __init__(self, probability, filter_type="mean", sizes=None, size=3): Operation.__init__(self, probability) self.filter_type = filter_type self.size = size self.sizes = sizes self.filters = { "median": ImageFilter.MedianFilter, "min": ImageFilter.MinFilter, "max": ImageFilter.MaxFilter, "mode": ImageFilter.ModeFilter, }
def __init__(self, probability): """ As the aspect ratio is always kept constant, only a :attr:`scale_factor` is required for scaling the image. :param probability: Controls the probability that the operation is performed when it is invoked in the pipeline. :param scale_factor: The factor by which to scale, where 1.5 would result in an image scaled up by 150%. :type probability: Float :type scale_factor: Float """ Operation.__init__(self, probability)
def __init__(self, probability, hue_shift, saturation_scale, saturation_shift, value_scale, value_shift): # Call the superclass's constructor (meaning you must # supply a probability value): Operation.__init__(self, probability) # Set your custom operation's member variables here as required: self.hue_shift = hue_shift self.saturation_scale = saturation_scale self.saturation_shift = saturation_shift self.value_scale = value_scale self.value_shift = value_shift self.rgb_to_hsv = np.vectorize(colorsys.rgb_to_hsv) self.hsv_to_rgb = np.vectorize(colorsys.hsv_to_rgb)
def __init__(self, probability, max_translate_x, max_translate_y): """ The translation is randomised in magnitude, from 0 to the :attr:`max_translate_x` or 0 to :attr:`max_translate_y` where the direction is randomised. The translation axis is also randomised :param probability: Controls the probability that the operation is performed when it is invoked in the pipeline. :param max_translate_x: The maximum translation in x direction. :param max_translate_y: The maximum translation in y direction. :type probability: Float :type max_translate_x: Integer :type max_translate_y: Integer """ Operation.__init__(self, probability) self.max_translate_x = max_translate_x self.max_translate_y = max_translate_y
def __init__(self, probability, max_shear_left, max_shear_right, keep_size=False): """ The shearing is randomised in magnitude, from 0 to the :attr:`max_shear_left` or 0 to :attr:`max_shear_right` where the direction is randomised. The shear axis is also randomised i.e. if it shears up/down along the y-axis or left/right along the x-axis. :param probability: Controls the probability that the operation is performed when it is invoked in the pipeline. :param max_shear_left: The maximum shear to the left. :param max_shear_right: The maximum shear to the right. :type probability: Float :type max_shear_left: Integer :type max_shear_right: Integer """ Operation.__init__(self, probability) self.max_shear_left = max_shear_left self.max_shear_right = max_shear_right self.keep_size = keep_size
def __init__(self, probability: float, random_color_probability: float = 0): Operation.__init__(self, probability) self.randomColor_offset = random_color_probability * 255
def __init__(self, probability, margin): Operation.__init__(self, probability) self.margin = margin
def __init__(self, probability, width, height): Operation.__init__(self, probability) self.width = width self.height = height
def __init__(self, probability: float, mean: float, sigma: float): Operation.__init__(self, probability) self.mean = mean self.sigma = sigma
def __init__(self, probability: float, prop: float): Operation.__init__(self, probability) self.prop = prop
def __init__(self, probability, blur=1, threshold=128): Operation.__init__(self, probability) self.blur = blur self.threshold = threshold
def __init__(self, probability, manipulation): # Call the superclass's constructor (meaning you must # supply a probability value): Operation.__init__(self, probability) # Set your custom operation's member variables here as required: self.manipulation = manipulation
def __init__(self, probability, num_of_folds): Operation.__init__(self, probability)
def __init__(self, probability, max_horizontal_loss, max_vertical_loss): Operation.__init__(self, probability) self.max_horizontal_loss = max_horizontal_loss self.max_vertical_loss = max_vertical_loss
def __init__(self, probability, mean, std): Operation.__init__(self, probability) self.mean = mean self.std = std
def __init__(self, probability, blur_type='mean'): Operation.__init__(self, probability)
def __init__(self, probability, prop): Operation.__init__(self, probability) self.prop = prop
def __init__(self, probability, noise_type='gauss'): Operation.__init__(self, probability)
def __init__(self, probability): # Call the superclass's constructor (meaning you must # supply a probability value): Operation.__init__(self, probability)
def __init__(self, probability): Operation.__init__(self, probability)
def __init__(self, probability, mean, sigma): Operation.__init__(self, probability) self.mean = mean self.sigma = sigma