Пример #1
0
class MutationQuery(object):
    def __init__(self, url_information):
        self.url_information = url_information
        # print(url_information)
        self.db = DBBase('Genes')

    def resolve_url(self):
        url_information_list = self.url_information.split(',')
        url_information_dict = {}
        for item in url_information_list:
            try:
                item_key, item_value = item.split('=')
                url_information_dict[item_key] = item_value
            except:
                num = 0
                for index, item_item in enumerate(item):
                    if item_item in "0123456789":
                        num = index
                        break
                item_key = item[0:num]
                item_value = item[num:-1]
                url_information_dict[item_key] = item_value

        return url_information_dict

    def is_type(self, a):
        lis = "1234567890"
        for item in a:
            if item not in lis:
                return "symbol"
            else:
                return "ID"

    def get_mutation(self):
        mutation_dict = self.resolve_url()
        if self.is_type(mutation_dict.get('gene')) == 'ID':
            id_or_symbol = "ENTREZ_ID"
        else:
            id_or_symbol = "Symbol"
        if mutation_dict.get('location') == 'cnv':
            dnm_orcnv = 'CNV'
        else:
            dnm_orcnv = 'DNM'

        all_mutation = self.db.find_one_by_one_condition(
            id_or_symbol, mutation_dict.get('gene')).get(dnm_orcnv)
        for item in all_mutation:
            if dnm_orcnv == 'DNM':
                if item.get('chr') == mutation_dict.get('chr') and item.get(
                        'Position') == mutation_dict.get('position'):
                    return item
            else:
                if item.get('start') == mutation_dict.get(
                        'start') and item.get('end') == mutation_dict.get(
                            'end'):
                    return item
class GetIsoformAndEnst(object):
    def __init__(self, entrez_id):
        self.entrez_id = entrez_id
        self.db = DBBase("Uniprot_Information")

    def get_isoform_and_enst(self):

        query_id_result = self.db.find_one_by_one_condition(
            "Entrez_ID", self.entrez_id)
        isoform_and_enst_list = []
        if query_id_result != None:
            uniprot_ensmbel_information = query_id_result.get(
                "Ensmbl_information")
            if uniprot_ensmbel_information != None and uniprot_ensmbel_information != []:
                for item in uniprot_ensmbel_information:
                    if item.get("uniprot_unique_flag") == True:
                        note = "No assemble annotation found in GRCH37."
                    else:
                        note = "-"
                    if note == '-':
                        if item.get("molecule") != None:
                            isoform = item.get("molecule").get("@id")
                            enst_id = item.get("@id")
                            if item.get('property') != None:
                                for item_item in item.get('property'):
                                    if item_item.get(
                                            "@type") == 'protein sequence ID':
                                        ensp_id = item_item.get("@value")
                                    if item_item.get("@type") == 'gene ID':
                                        ensg_id = item_item.get("@value")
                        else:
                            if item.get("@id") != None:
                                enst_id = item.get("@id")
                                isoform = query_id_result.get("UniprotKB_AC")
                                if item.get("property") != None:
                                    for item_item in item.get("property"):
                                        if item_item.get(
                                                "@type"
                                        ) == "protein sequence ID":
                                            ensp_id = item_item.get("@value")
                                        elif item_item.get(
                                                "@type") == "gene ID":
                                            ensg_id = item_item.get("@value")
                        item_list = [enst_id, ensp_id, ensg_id, isoform, note]
                        isoform_and_enst_list.append(item_list)
                    else:
                        pass
            # print(isoform_and_enst_list)
            return isoform_and_enst_list

    def get_isoform(self, enst_id):
        all_isoform = self.get_isoform_and_enst()
        for item in all_isoform:
            if item[0] == enst_id.split(".")[0]:
                return item[3]
 def __init__(self, ID, isoform="all"):
     self.ID = ID
     self.db = DBBase('ProteinExpress_Update')
     # print(isoform)
     self.isoform_list = isoform
 def __init__(self, entrez_id):
     self.entrez_id = entrez_id
     self.db = DBBase("Uniprot_Information")
Пример #5
0
 def __init__(self, ID, transcript, brain_express=0):
     self.ID = ID
     self.db = DBBase('Gtex_Trans_AllTissue_Pledged')
     self.transcript_list = transcript
     self.brain_express = brain_express
Пример #6
0
class GtexTranscriptExpressPlot(object):
    def __init__(self, ID, transcript, brain_express=0):
        self.ID = ID
        self.db = DBBase('Gtex_Trans_AllTissue_Pledged')
        self.transcript_list = transcript
        self.brain_express = brain_express

    def get_express_value_from_db(self):
        if self.transcript_list == "all":
            return self.db.find_count_by_one_condition("Entrez_id", self.ID)

        # .get('ProteinExpressData')

    def get_columns(self):
        columns = [
            'Adipose - Subcutaneous', 'Adipose - Visceral (Omentum)',
            'Adrenal Gland', 'Artery - Aorta', 'Artery - Coronary',
            'Artery - Tibial', 'Bladder', 'Brain - Amygdala',
            'Brain - Anterior cingulate cortex (BA24)',
            'Brain - Caudate (basal ganglia)', 'Brain - Cerebellar Hemisphere',
            'Brain - Cerebellum', 'Brain - Cortex',
            'Brain - Frontal Cortex (BA9)', 'Brain - Hippocampus',
            'Brain - Hypothalamus',
            'Brain - Nucleus accumbens (basal ganglia)',
            'Brain - Putamen (basal ganglia)',
            'Brain - Spinal cord (cervical c-1)', 'Brain - Substantia nigra',
            'Breast - Mammary Tissue', 'Cells - EBV-transformed lymphocytes',
            'Cells - Transformed fibroblasts', 'Cervix - Ectocervix',
            'Cervix - Endocervix', 'Colon - Sigmoid', 'Colon - Transverse',
            'Esophagus - Gastroesophageal Junction', 'Esophagus - Mucosa',
            'Esophagus - Muscularis', 'Fallopian Tube',
            'Heart - Atrial Appendage', 'Heart - Left Ventricle',
            'Kidney - Cortex', 'Liver', 'Lung', 'Minor Salivary Gland',
            'Muscle - Skeletal', 'Nerve - Tibial', 'Ovary', 'Pancreas',
            'Pituitary', 'Prostate', 'Skin - Not Sun Exposed (Suprapubic)',
            'Skin - Sun Exposed (Lower leg)',
            'Small Intestine - Terminal Ileum', 'Spleen', 'Stomach', 'Testis',
            'Thyroid', 'Uterus', 'V****a', 'Whole Blood'
        ]
        return columns

    def get_brain_columns(self):
        columns = [
            'Brain - Amygdala', 'Brain - Anterior cingulate cortex (BA24)',
            'Brain - Caudate (basal ganglia)', 'Brain - Cerebellar Hemisphere',
            'Brain - Cerebellum', 'Brain - Cortex',
            'Brain - Frontal Cortex (BA9)', 'Brain - Hippocampus',
            'Brain - Hypothalamus',
            'Brain - Nucleus accumbens (basal ganglia)',
            'Brain - Putamen (basal ganglia)',
            'Brain - Spinal cord (cervical c-1)', 'Brain - Substantia nigra'
        ]
        return columns

    def l2(self, x):
        """
		对输入的x取log
		:param x:
		:return:
		"""
        x = float(x)
        if x != 0:
            return math.log2(x + 1)
        else:
            return 0

    def r2(self, x):
        """
		对输入的x取小数点后两位小数的方法
		:param x:
		:return:
		"""
        return round(x, 2)

    def average(self, num_list):
        # print(num_list)
        num_list = [float(item) for item in num_list]
        return (sum(num_list)) / len(num_list)
        # return self.r2(self.l2(float(sum(num_list)) / len(num_list)))

    def data_handling(self):
        express_list = self.get_express_value_from_db()
        if len(express_list) >= 1:  #取出了多于等于一条转录本
            express_average = []
            if self.brain_express == 0:
                for item_trans in express_list:
                    list_avg = [item_trans.get("transcript_id")]
                    for item_colunms in self.get_columns():
                        if item_trans.get(item_colunms) != None:
                            # list_avg.append(item_trans.get("transcript_id"))
                            # print(item_trans.get(item_colunms))
                            list_avg.append(
                                self.r2(self.l2(item_trans.get(item_colunms))))
                        else:
                            list_avg.append(None)
                    express_average.append(list_avg)
            else:
                for item_trans in express_list:
                    list_avg = [item_trans.get("transcript_id")]
                    for item_colunms in self.get_columns():
                        if item_trans.get(item_colunms) != None:
                            list_avg.append(
                                self.r2(self.l2(item_trans.get(item_colunms))))
                        else:
                            list_avg.append(None)
                    temp_flag = 0
                    for item_list_avg in list_avg[8:21]:  #脑组织表达的列为8-21列,第一列为id
                        if item_list_avg >= 1:
                            temp_flag = 1
                            break
                    if temp_flag == 1:
                        express_average.append(list_avg)
        else:
            express_average = []
        return express_average

    def plot(self):
        express_average = self.data_handling()
        if express_average != []:
            trace = []
            x_columns = self.get_columns()
            for item in express_average:
                # print(item)
                # print(item[1:-1])
                trace.append(
                    go.Scatter(
                        x=x_columns,
                        y=item[1:-1],
                        hoverinfo='all',
                        # mode="line",
                        name=item[0],
                        ycalendar=180,
                        # line=dict(shape='spline'),
                        hoverlabel=dict(namelength=-1)))
            layouts = go.Layout(
                # paper_bgcolor='rgb(249, 249, 249)',
                # plot_bgcolor='rgb(249, 249, 249)',
                height=400,
                width=1200,
                hovermode='closest',
                margin=go.Margin(  # x,y轴label距离图纸四周的距离
                    l=50, r=100, b=200, t=10, pad=0),
                xaxis=dict(
                    showgrid=True,
                    zeroline=False,
                    showline=False,
                    showticklabels=True,
                    tickangle=90,  # x轴刻度之间距离
                ),
                yaxis=dict(autorange=True,
                           title='log<sub>2</sub> (TPM+1)',
                           titlefont=dict(family='Arial, sans-serif',
                                          size=18,
                                          color='lightgrey'),
                           showticklabels=True,
                           tickangle=90,
                           tickfont=dict(family='Old Standard TT, serif',
                                         size=14,
                                         color='black'),
                           exponentformat='e',
                           showexponent='All'))
            figs = go.Figure(data=trace, layout=layouts)
            # plotly.offline.plot(figs, show_link=False)
            return plotly.offline.plot(figs,
                                       show_link=False,
                                       output_type="div",
                                       include_plotlyjs=False)
        else:
            return '<div>There is no corresponding data published yet, we will update it when such data available. </div>'
	def __init__(self, ID):
		self.ID = ID
		self.db = DBBase('ProteinExpression')
class ProteinExpressPlot(object):

	def __init__(self, ID):
		self.ID = ID
		self.db = DBBase('ProteinExpression')

	def get_express_value_from_db(self):
		return self.db.find_one_by_one_condition("ENTREZ_ID", self.ID).get('ProteinExpressData')

	def plot(self):
		express_list = self.get_express_value_from_db()
		if express_list != None:
			x = []
			y = []
			array = []
			for item in express_list:
				x.append(item['TISSUE_NAME'])
				y.append(item['NORMALIZED_INTENSITY'])
				min = float(item['MIN_NORMALIZED_INTENSITY'])
				max = float(item['MAX_NORMALIZED_INTENSITY'])
				error = (max - min) / 2
				array.append(error)
			trace1 = go.Bar(
				x=x,
				y=y,
				# name='NSD2',
				error_y=dict(
					type='data',
					array=array,
					visible=True
				)
			)

			data = [trace1]
			layout = go.Layout(
				paper_bgcolor='rgb(249, 249, 249)',
				plot_bgcolor='rgb(249, 249, 249)',
				barmode='group',
				height=500,
				width=600,
				title='<br>Median protein expression</br>',
				# yaxis=dict(range=[0, 10]),
				# titlefont=dict(size=25), plot_bgcolor='#EFECEA',
				hovermode='closest',
				margin=go.Margin(  # x,y轴label距离图纸四周的距离
					l=70,
					r=30,
					b=100,
					t=10,
					pad=0
				),
				xaxis=dict(
					# autorange=True,
					# title='Diffient Brain region',
					# titlefont=dict(
					# 	family='Arial, sans-serif',
					# 	size=18,
					# 	color='lightgrey'
					# ),

					showgrid=True,
					zeroline=False,
					showline=False,
					showticklabels=True,
					tickangle=20,  # x轴刻度之间距离
					# automargin=False,
					# separatethousands=True,
				), yaxis=dict(
					# range=[0,],
					autorange=True,
					title='log <sub>10</sub> normalized iBAQ intensity',
					titlefont=dict(
						family='Arial, sans-serif',
						size=18,
						color='lightgrey'
					),
					showticklabels=True,
					tickangle=90,
					tickfont=dict(
						family='Old Standard TT, serif',
						size=14,
						color='black'
					),
					exponentformat='e',
					showexponent='All'
				)
			)

			fig = go.Figure(data=data, layout=layout)
			# plotly.offline.plot(fig, show_link=False)
			return plotly.offline.plot(fig, show_link=False, output_type="div",include_plotlyjs=False)
		else:
			return '<div>There is no corresponding data published yet, we will update it when such data available. </div>'
Пример #9
0
	def __init__(self, ID, transcript):
		self.ID = ID
		self.db = DBBase('Gtex_Trans_AllTissue_Pledged')
		for index, item in enumerate(transcript):
			transcript[index] = item.split(".")[0]
		self.transcript_list = transcript
Пример #10
0
class GetBrainExpressTranscript(object):


	def __init__(self, ID, transcript):
		self.ID = ID
		self.db = DBBase('Gtex_Trans_AllTissue_Pledged')
		for index, item in enumerate(transcript):
			transcript[index] = item.split(".")[0]
		self.transcript_list = transcript
		# print(self.transcript_list)

	def get_express_value_from_db(self):
		return self.db.find_count_by_one_condition("Entrez_id", self.ID)


	def get_columns(self):
		columns = ['Adipose - Subcutaneous', 'Adipose - Visceral (Omentum)', 'Adrenal Gland', 'Artery - Aorta',
				   'Artery - Coronary', 'Artery - Tibial', 'Bladder', 'Brain - Amygdala',
				   'Brain - Anterior cingulate cortex (BA24)', 'Brain - Caudate (basal ganglia)',
				   'Brain - Cerebellar Hemisphere', 'Brain - Cerebellum', 'Brain - Cortex',
				   'Brain - Frontal Cortex (BA9)', 'Brain - Hippocampus', 'Brain - Hypothalamus',
				   'Brain - Nucleus accumbens (basal ganglia)', 'Brain - Putamen (basal ganglia)',
				   'Brain - Spinal cord (cervical c-1)', 'Brain - Substantia nigra', 'Breast - Mammary Tissue',
				   'Cells - EBV-transformed lymphocytes', 'Cells - Transformed fibroblasts', 'Cervix - Ectocervix',
				   'Cervix - Endocervix', 'Colon - Sigmoid', 'Colon - Transverse',
				   'Esophagus - Gastroesophageal Junction', 'Esophagus - Mucosa', 'Esophagus - Muscularis',
				   'Fallopian Tube', 'Heart - Atrial Appendage', 'Heart - Left Ventricle', 'Kidney - Cortex',
				   'Liver',
				   'Lung', 'Minor Salivary Gland', 'Muscle - Skeletal', 'Nerve - Tibial', 'Ovary', 'Pancreas',
				   'Pituitary', 'Prostate', 'Skin - Not Sun Exposed (Suprapubic)', 'Skin - Sun Exposed (Lower leg)',
				   'Small Intestine - Terminal Ileum', 'Spleen', 'Stomach', 'Testis', 'Thyroid', 'Uterus', 'V****a',
				   'Whole Blood']
		return columns

	def get_brain_columns(self):
		columns = ['Brain - Amygdala', 'Brain - Anterior cingulate cortex (BA24)',
				   'Brain - Caudate (basal ganglia)',
				   'Brain - Cerebellar Hemisphere', 'Brain - Cerebellum', 'Brain - Cortex',
				   'Brain - Frontal Cortex (BA9)', 'Brain - Hippocampus', 'Brain - Hypothalamus',
				   'Brain - Nucleus accumbens (basal ganglia)', 'Brain - Putamen (basal ganglia)',
				   'Brain - Spinal cord (cervical c-1)', 'Brain - Substantia nigra']
		return columns

	def l2(self, x):
		"""
		对输入的x取log
		:param x:
		:return:
		"""
		if x != 0:
			return math.log2(x + 1)
		else:
			return 0

	def r2(self, x):
		"""
		对输入的x取小数点后两位小数的方法
		:param x:
		:return:
		"""
		return round(x, 2)

	def average(self, num_list):
		num_list = [float(item) for item in num_list]
		return self.r2(self.l2(float(sum(num_list)) / len(num_list)))

	def data_handling(self):
		express_list = self.get_express_value_from_db()
		express_average = []
		final_transcript = []
		if len(express_list) >= 1:  # 取出了多于等于一条转录本
			for item_trans in express_list:
				list_avg = [item_trans.get("transcript_id")]
				for item_colunms in self.get_columns():
					if item_trans.get(item_colunms) != None:
						list_avg.append(self.r2(self.l2(item_trans.get(item_colunms))))
					else:
						list_avg.append(None)
				temp_flag = 0
				for item_list_avg in list_avg[8:21]:  # 脑组织表达的列为8-21列
					if item_list_avg >= 1:
						temp_flag = 1
				if temp_flag == 1 and list_avg[0].split(".")[0] in self.transcript_list:
					# if list_avg[0].split(".")[0] in self.transcript_list:
					express_average.append(list_avg)
					final_transcript.append(list_avg[0])
		else:
			express_average = []
		return final_transcript, express_average
Пример #11
0
 def __init__(self, url_information):
     self.url_information = url_information
     # print(url_information)
     self.db = DBBase('Genes')
 def __init__(self, ID, mutation):
     self.id = ID
     self.db = DBBase('Genes')
     self.mutation_query = MutationQuery(mutation)
class MutationTrancript(object):
    def __init__(self, ID, mutation):
        self.id = ID
        self.db = DBBase('Genes')
        self.mutation_query = MutationQuery(mutation)

    def get_all_tarncript(self):
        gene_data = self.db.find_one_by_one_condition("ENTREZ_ID", self.id)
        gene_genecode_trans = gene_data.get("Trans_Gencode")
        # gene_refseq_data = gene_data.get("Trans_Ref")
        all_tarncript = []
        if gene_genecode_trans != None:
            for item in gene_genecode_trans:
                all_tarncript.append(item)
        # if gene_refseq_data != None:
        # 	for item in gene_refseq_data:
        # 		all_tarncript.append(item)
        return all_tarncript

    def judge_mutation_position_on_trancript_exon(self,
                                                  position,
                                                  transcriot_exon,
                                                  type=None):
        flag = False
        if type == 'splice-site' or type.startswith("splice-site"):
            transcriot_exon_temp_list = transcriot_exon.split(",")
            for item in transcriot_exon_temp_list:
                if int(position) >= int(item.split("_")[0].replace(
                        '"', '')) - 10 and int(position) <= int(
                            item.split("_")[1].replace('"', '')) + 10:
                    flag = True
            return flag
        else:
            transcriot_exon_temp_list = transcriot_exon.split(",")
            for item in transcriot_exon_temp_list:
                if int(position) >= int(item.split("_")[0].replace(
                        '"', '')) and int(position) <= int(
                            item.split("_")[1].replace('"', '')):
                    flag = True
            return flag

    def get_mutation_impact_transcript(self):
        all_transcript = self.get_all_tarncript()
        mutation = self.mutation_query.get_mutation()
        if mutation.get("Exonic Func") != None:
            mutation_type = mutation.get("Exonic Func")
        else:
            mutation_type = None
        mutation_position = mutation.get("Position")
        mutation_chr = mutation.get("chr")
        if mutation_position != None:
            for item in all_transcript:
                if item.get('coding_exon_region') != 'NA':
                    if mutation_chr == item.get("chrom").replace(
                            "chr", "") or mutation_chr == item.get("chrom"):
                        if self.judge_mutation_position_on_trancript_exon(
                                mutation_position,
                                item.get('coding_exon_region'), mutation_type):
                            item['flag'] = True
                        else:
                            item['flag'] = False
                    else:
                        item['flag'] = False
                else:
                    item['flag'] = False
        result = []
        for item in all_transcript:
            if item.get("flag") == True:
                result.append(item.get("TranscriptID"))
        return result

    def get_mutation_impact_isoforms(self):
        all_transcript = self.get_all_tarncript()
        mutation = self.mutation_query.get_mutation()
        # print(mutation.get("Exonic Func"))
        if mutation.get("Exonic Func") != None:
            mutation_type = mutation.get("Exonic Func")
        else:
            mutation_type = None
        mutation_position = mutation.get("Position")
        mutation_chr = mutation.get("chr")
        if mutation_position != None:
            for item in all_transcript:
                if item.get('coding_exon_region') != 'NA':
                    if mutation_chr == item.get("chrom").replace(
                            "chr", "") or mutation_chr == item.get("chrom"):
                        if self.judge_mutation_position_on_trancript_exon(
                                mutation_position,
                                item.get('coding_exon_region'), mutation_type):
                            item['flag'] = True
                        else:
                            item['flag'] = False
                    else:
                        item['flag'] = False
                else:
                    item['flag'] = False
        transcript_result = []
        for item in all_transcript:
            if item.get("flag") == True:
                transcript_result.append(item.get("TranscriptID"))

        isoform_result = []
        db = GetIsoformAndEnst(self.id)
        for item in transcript_result:
            if db.get_isoform(item) != None:
                isoform_result.append(db.get_isoform(item))

        return isoform_result
class ProteinExpressPlot(object):
    def __init__(self, ID, isoform_list="all"):
        self.ID = ID
        self.db = DBBase('ProteinExpress_Update')
        self.isoform_list = isoform_list

    def get_express_value_from_db(self):
        x_list = []
        y_list = []
        array_list = []
        id_list = []
        if self.isoform_list == "all":
            results = self.db.find_count_by_one_condition("Entrez_ID", self.ID)
            flag = [0] * len(results)
            for index, item in enumerate(results):
                # print()
                if item.get('Express_Value') != {
                        'd': {
                            'results': []
                        }
                } and '-' in item.get('Uniprot_ID'):
                    for item_item in item.get('Express_Value').get('d').get(
                            'results'):
                        if item_item.get('TISSUE_NAME') in [
                                "brain", 'arachnoid cyst', 'cerebral cortex',
                                'cerebrospinal fluid', 'prefrontal cortex',
                                'spinal cord'
                        ] and float(
                                item_item.get('NORMALIZED_INTENSITY')) >= 1:
                            flag[index] = 1

            for item, item_flag in zip(results, flag):
                if item_flag != 0:
                    if item.get('Express_Value') != {'d': {'results': []}}:
                        x = []
                        y = []
                        array = []
                        for item_item in item.get('Express_Value').get(
                                'd').get('results'):
                            # print(item_item['TISSUE_NAME'])
                            x.append(item_item['TISSUE_NAME'])
                            y.append(item_item['NORMALIZED_INTENSITY'])
                            min = float(item_item['MIN_NORMALIZED_INTENSITY'])
                            max = float(item_item['MAX_NORMALIZED_INTENSITY'])
                            error = (max - min) / 2
                            array.append(error)
                        id_list.append(item.get("Uniprot_ID"))
                        x_list.append(x)
                        y_list.append(y)
                        array_list.append(array)
            # print(len(result_list))
            # print(result_list)
            return x_list, y_list, array_list, id_list
        else:
            results = self.db.find_count_by_one_condition("Entrez_ID", self.ID)
            flag = [0] * len(results)
            for index, item in enumerate(results):
                # print(item)
                if item.get('Express_Value') != {'d': {'results': []}}:
                    for item_item in item.get('Express_Value').get('d').get(
                            'results'):
                        if item_item.get('TISSUE_NAME') in [
                                "brain", 'arachnoid cyst', 'cerebral cortex',
                                'cerebrospinal fluid', 'prefrontal cortex',
                                'spinal cord'
                        ] and float(
                                item_item.get('NORMALIZED_INTENSITY')) >= 0.5:
                            flag[index] = 1

            for item, item_flag in zip(results, flag):
                if item_flag != 0 and item.get(
                        'Uniprot_ID') in self.isoform_list:
                    if item.get('Express_Value') != {'d': {'results': []}}:
                        x = []
                        y = []
                        array = []
                        for item_item in item.get('Express_Value').get(
                                'd').get('results'):
                            # print(item_item['TISSUE_NAME'])
                            x.append(item_item['TISSUE_NAME'])
                            y.append(item_item['NORMALIZED_INTENSITY'])
                            min = float(item_item['MIN_NORMALIZED_INTENSITY'])
                            max = float(item_item['MAX_NORMALIZED_INTENSITY'])
                            error = (max - min) / 2
                            array.append(error)
                    if item.get("Uniprot_ID") != None and item.get(
                            "Uniprot_ID") in self.isoform_list:
                        id_list.append(item.get("Uniprot_ID"))
                        x_list.append(x)
                        y_list.append(y)
                        array_list.append(array)
            # print(len(result_list))
            # print(result_list)
            return x_list, y_list, array_list, id_list

    def get_weight(self, w):
        if w <= 10:
            return 200
        elif w > 10 and w <= 30:
            return w * 20 + 200
        else:
            return 800

    def plot(self):
        x_list, y_list, array_list, id_list = self.get_express_value_from_db()
        if len(x_list) == len(y_list) and len(x_list) != 0:
            trace = []
            for x_item, y_item, array_item, id_item in zip(
                    x_list, y_list, array_list, id_list):
                for i, item in enumerate(x_item):
                    if item in [
                            "brain", 'arachnoid cyst', 'cerebral cortex',
                            'cerebrospinal fluid', 'prefrontal cortex',
                            'spinal cord'
                    ]:
                        x_item[i] = "<b>" + x_item[i] + "&nbsp;</b>"
                    else:
                        x_item[i] = x_item[i] + '&nbsp;'
                trace.append(
                    go.Bar(x=y_item,
                           y=x_item,
                           name=id_item,
                           orientation='h',
                           hoverinfo='all',
                           error_x=dict(type='data',
                                        array=array_item,
                                        visible=True)))
            if len(x_list) >= 1:
                l_height = self.get_weight(len(x_list[0]) * len(id_list))
            else:
                l_height = 400
            layout = go.Layout(
                paper_bgcolor='rgb(249, 249, 249)',
                plot_bgcolor='rgb(249, 249, 249)',
                barmode='stack',
                height=l_height,
                width=800,
                title='<br>Median protein expression</br>',
                # yaxis=dict(range=[0, 10]),
                # titlefont=dict(size=25), plot_bgcolor='#EFECEA',
                hovermode='closest',
                margin=go.Margin(  # x,y轴label距离图纸四周的距离
                    l=250, r=120, b=80, t=40, pad=0),
                xaxis=dict(
                    # autorange=True,
                    # title='Diffient Brain region',
                    # titlefont=dict(
                    # 	family='Arial, sans-serif',
                    # 	size=18,
                    # 	color='lightgrey'
                    # ),
                    title='log <sub>10</sub> normalized iBAQ intensity',
                    titlefont=dict(
                        family='Arial, sans-serif',
                        size=18,
                    ),
                    showgrid=True,
                    zeroline=True,
                    showline=True,
                    showticklabels=True,
                    # tickangle=40,  # x轴刻度之间距离
                    # automargin=False,
                    # separatethousands=True,
                ),
                yaxis=dict(
                    # range=[0,],
                    autorange=True,

                    # gridwidth=0.5,
                    showticklabels=True,
                    # tickangle=90,
                    # tickfont=dict(
                    # 	# family='Old Standard TT, serif',
                    # 	# size=14,
                    # 	# color='black'
                    # ),
                    exponentformat='e',
                    showexponent='All'))

            fig = go.Figure(data=trace, layout=layout)
            # plotly.offline.plot(fig, show_link=False)
            return plotly.offline.plot(fig,
                                       show_link=False,
                                       output_type="div",
                                       include_plotlyjs=False)
        else:
            return '<div>There is no corresponding data published yet, we will update it when such data available. </div>'