from BayesFilter import BayesFilter ## Example data taken from Stanford AI video class (Unit 5 Machine Learning) ## http://www.ai-class.org filter = BayesFilter() ## Add some messages we flagged as spam filter.addDoc("offer is secret", "spam") filter.addDoc("click secret link", "spam") filter.addDoc("secret sports link", "spam") ## Add some messages we did not flag filter.addDoc("play sports today", None) filter.addDoc("went play sports", None) filter.addDoc("secret sports event", None) filter.addDoc("sports is today", None) filter.addDoc("sports costs money", None) filter.db.info() print "Probability of spam, given message 'today is secret' = %s" % filter.predict("spam", "today is secret")
import sys from BayesFilter import BayesFilter import BayesDB db = BayesDB.createOrLoad(sys.argv[1]) filter = BayesFilter(db) print filter.predict(sys.argv[2], sys.argv[3])
from BayesFilter import BayesFilter from BayesDB import BayesDB ## Example data taken from Stanford AI video class (Unit 5 Machine Learning) ## http://www.ai-class.org db = BayesDB() filter = BayesFilter(db) ## Add some messages we flagged as spam db.addDoc("offer is secret", "spam") db.addDoc("click secret link", "spam") db.addDoc("secret sports link", "spam") ## Add some messages we did not flag db.addDoc("play sports today", None) db.addDoc("went play sports", None) db.addDoc("secret sports event", None) db.addDoc("sports is today", None) db.addDoc("sports costs money", None) print "Probability of spam, given message 'today is secret' = %s" % filter.predict("spam", "today is secret")