def test_train_function_with_priors(self): model = NaiveBayes.train(self.xs, self.ys, priors={ 'male': 0.1, 'female': 0.9 }) result = NaiveBayes.calculate(model, self.test, scale=True) expected = -692.0 self.assertEqual(expected, round(result['male']))
def test_calculate_function_with_scale(self): result = NaiveBayes.calculate(self.model, self.test, scale=True) expected = -689.0 self.assertEqual(expected, round(result['male']))
def get(self): offset = int(self.get_argument('o', default='1')) rowcount = int(self.get_argument('r', default='10')) offset = (offset - 1) * rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package = self.get_argument('model_name', default='') cur = self.db.getCursor() rowdata = {} #查询 if no == '1': if model_type == '1': cur.execute( " select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' " % (model_id)) rows = cur.fetchall() print(rows) rowdata['struct'] = "id,create_id,name,note,beta " rowdata['rows'] = rows else: cur.execute( " select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' " % (model_id, model_type)) rows = cur.fetchall() rowdata['struct'] = "id,create_id,name,note,type,filename " rowdata['rows'] = rows self.response(rowdata) elif no == '2': if model_type == '1': beta = self.get_argument('beta', default='') model_data = self.get_argument('model', default='') a = [] q = 0 print(model_data) a = (list(eval(model_data))) model = LogisticRegression.LogisticRegression() model.beta = (list(eval(beta))) rowdata = {} rowdata['op'] = LogisticRegression.calculate(model, a) rowdata['rows'] = LogisticRegression.classify(model, a) elif model_type == '2': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = kNN.kNN() model = bb.model.knn(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = kNN.calculate(model, a) rowdata['rows'] = kNN.classify(model, a) elif model_type == '3': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = NaiveBayes.NaiveBayes() model = bb.model.bayes(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = NaiveBayes.calculate(model, a) rowdata['rows'] = NaiveBayes.classify(model, a) self.response(rowdata)
def test_train_function_with_priors(self): model = NaiveBayes.train(self.xs, self.ys, priors={'male': 0.1, 'female': 0.9}) result = NaiveBayes.calculate(model, self.test, scale=True) expected = -692.0 self.assertEqual(expected, round(result['male']))
def get(self): offset = int(self.get_argument('o',default='1')) rowcount = int(self.get_argument('r',default='10')) offset=(offset-1)*rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package=self.get_argument('model_name', default='') cur=self.db.getCursor() rowdata={} #查询 if no=='1': if model_type =='1': cur.execute(" select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' "% (model_id) ) rows = cur.fetchall() print(rows) rowdata['struct']="id,create_id,name,note,beta " rowdata['rows']= rows else: cur.execute(" select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' "% (model_id,model_type) ) rows = cur.fetchall() rowdata['struct']="id,create_id,name,note,type,filename " rowdata['rows']= rows self.response(rowdata) elif no=='2': if model_type=='1': beta = self.get_argument('beta', default='') model_data=self.get_argument('model', default='') a=[] q=0 print(model_data) a=(list(eval(model_data))) model=LogisticRegression.LogisticRegression() model.beta=(list(eval(beta))) rowdata={} rowdata['op']=LogisticRegression.calculate(model,a) rowdata['rows']=LogisticRegression.classify(model,a) elif model_type=='2': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=kNN.kNN() model=bb.model.knn(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=kNN.calculate(model,a) rowdata['rows']=kNN.classify(model,a) elif model_type=='3': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=NaiveBayes.NaiveBayes() model=bb.model.bayes(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=NaiveBayes.calculate(model,a) rowdata['rows']=NaiveBayes.classify(model,a) self.response(rowdata)