class TrustConstr(SciPyInterface):
    """Class from scipy for optimization with trust-constr as method for the
    solver.

    This class is a wrapper for the method trust-constr from the optimization
    suite of the scipy interface. It defines the solver options in the local
    variable options as a dictionary and implements the abstract method run for
    running the optimization.
    """
    gtol = UnsignedFloat(default=1e-6)
    xtol = UnsignedFloat(default=1e-8)
    barrier_tol = UnsignedFloat(default=1e-8)
    initial_constr_penalty = UnsignedFloat(default=1.0)
    initial_tr_radius = UnsignedFloat(default=1.0)
    initial_barrier_parameter = UnsignedFloat(default=0.01)
    initial_barrier_tolerance = UnsignedFloat(default=0.01)
    factorization_method = None
    maxiter = UnsignedInteger(default=1000)
    verbose = UnsignedInteger(default=0)
    disp = Bool(default=False)
    _options = [
        'gtol', 'xtol', 'barrier_tol', 'finite_diff_rel_step',
        'initial_constr_penalty',
        'initial_tr_radius', 'initial_barrier_parameter',
        'initial_barrier_tolerance', 'factorization_method',
        'maxiter','verbose', 'disp'
    ]

    jac = Switch(default='3-point', valid=['2-point', '3-point', 'cs'])

    def __str__(self):
        return 'trust-constr'
class NelderMead(SciPyInterface):
    """
    """
    maxiter = UnsignedInteger()
    maxfev = UnsignedInteger()
    initial_simplex = None
    xatol = UnsignedFloat(default=0.01)
    fatol = UnsignedFloat(default=0.01)
    adaptive = Bool(default=True)
    _options = [
        'maxiter', 'maxfev', 'initial_simplex', 'xatol', 'fatol', 'adaptive'
    ]
class WenoParameters(ParametersGroup):
    """Class for defining the disrectization_weno_parameters

    Defines several parameters as UnsignedInteger, UnsignedFloat and save their
    names into a list named parameters.

    See also
    --------
    ParametersGroup
    """
    boundary_model = UnsignedInteger(default=0, ub=3)
    weno_eps = UnsignedFloat(default=1e-10)
    weno_order = UnsignedInteger(default=3, ub=3)
    _parameters = ['boundary_model', 'weno_eps', 'weno_order']
Пример #4
0
class SolverParametersGroup(ParametersGroup):
    """Class for defining the solver parameters for cadet.

    See also
    --------
    ParametersGroup
    """
    nthreads = UnsignedInteger(default=1)
    consistent_init_mode = UnsignedInteger(default=1, ub=7)
    consistent_init_mode_sens = UnsignedInteger(default=1, ub=7)

    _parameters = [
        'nthreads', 'consistent_init_mode', 'consistent_init_mode_sens'
    ]
Пример #5
0
class ModelSolverParametersGroup(ParametersGroup):
    """Class for defining the model_solver_parameters.

    Defines several parameters as UnsignedInteger with default values and save
    their names into a list named parameters.

    See also
    --------
    ParametersGroup
    """
    GS_TYPE = UnsignedInteger(default=1, ub=1)
    MAX_KRYLOV = UnsignedInteger(default=0)
    MAX_RESTARTS = UnsignedInteger(default=10)
    SCHUR_SAFETY = UnsignedFloat(default=1e-8)
    _parameters = ['GS_TYPE', 'MAX_KRYLOV', 'MAX_RESTARTS', 'SCHUR_SAFETY']
class BiLangmuir(BindingBaseClass):
    """Parameters for Multi Component Bi-Langmuir binding model.

    Attributes
    ----------
    adsorption_rate : list of unsigned floats. Length depends on n_comp.
        Adsorption rate constants.
    desorption_rate : list of unsigned floats. Length depends on n_comp.
        Desorption rate constants
    saturation_capacity : list of unsigned floats. Length depends on n_comp.
        Maximum adsorption capacities.
    """
    adsorption_rate = DependentlySizedUnsignedList(dep=('n_comp', 'n_states'))
    desorption_rate = DependentlySizedUnsignedList(dep=('n_comp', 'n_states'),
                                                   default=1)
    saturation_capacity = DependentlySizedUnsignedList(dep=('n_comp',
                                                            'n_states'))
    n_states = UnsignedInteger()

    def __init__(self, *args, n_states=2, **kwargs):
        super().__init__(*args, **kwargs)
        self.n_states = n_states

        self._parameter_names += [
            'adsorption_rate', 'desorption_rate', 'saturation_capacity',
            'n_states'
        ]

    @property
    def n_total_states(self):
        return self.n_comp * self.n_states
class LRMDiscretizationFV(DiscretizationParametersBase):
    ncol = UnsignedInteger(default=100)
    use_analytic_jacobian = Bool(default=True)
    reconstruction = Switch(default='WENO', valid=['WENO'])
    
    _parameters = DiscretizationParametersBase._parameters + [
        'ncol', 'use_analytic_jacobian', 'reconstruction',
    ]
    _dimensionality = ['ncol']
Пример #8
0
class SolverTimeIntegratorParametersGroup(ParametersGroup):
    """Class for defining the solver time integrator parameters for cadet.

    See also
    --------
    ParametersGroup
    """
    abstol = UnsignedFloat(default=1e-8)
    algtol = UnsignedFloat(default=1e-12)
    reltol = UnsignedFloat(default=1e-6)
    reltol_sens = UnsignedFloat(default=1e-12)
    init_step_size = UnsignedFloat(default=1e-6)
    max_steps = UnsignedInteger(default=1000000)
    max_step_size = UnsignedInteger(default=1000000)
    errortest_sens = Bool(default=False)
    max_newton_iter = UnsignedInteger(default=1000000)
    max_errtest_fail = UnsignedInteger(default=1000000)
    max_convtest_fail = UnsignedInteger(default=1000000)
    max_newton_iter_sens = UnsignedInteger(default=1000000)

    _parameters = [
        'abstol', 'algtol', 'reltol', 'reltol_sens', 'init_step_size',
        'max_steps', 'max_step_size', 'errortest_sens', 'max_newton_iter',
        'max_errtest_fail', 'max_convtest_fail', 'max_newton_iter_sens'
    ]
Пример #9
0
class SensitivityParametersGroup(ParametersGroup):
    """Class for defining the sensitivity parameters.

    The sensitivity parameters NSENS and SENS_METHOD are defined with default
    values.

    See also
    --------
    ParametersGroup
    """
    nsens = UnsignedInteger(default=0)
    sens_method = Switch(default='ad1', valid=['ad1'])
    
class LRMPDiscretizationFV(DiscretizationParametersBase):
    ncol = UnsignedInteger(default=100)

    par_geom = Switch(
        default='SPHERE', 
        valid=['SPHERE', 'CYLINDER', 'SLAB']
    )

    use_analytic_jacobian = Bool(default=True)
    reconstruction = Switch(default='WENO', valid=['WENO'])
    
    gs_type = Bool(default=True)
    max_krylov = UnsignedInteger(default=0)
    max_restarts = UnsignedInteger(default=10)
    schur_safety = UnsignedFloat(default=1.0e-8)
    
    _parameters = DiscretizationParametersBase._parameters + [
        'ncol', 'par_geom', 
        'use_analytic_jacobian', 'reconstruction', 
        'gs_type', 'max_krylov', 'max_restarts', 'schur_safety'
    ]
    _dimensionality = ['ncol']
class GRMDiscretizationFV(DiscretizationParametersBase):
    ncol = UnsignedInteger(default=100)
    npar = UnsignedInteger(default=5)

    par_geom = Switch(
        default='SPHERE', 
        valid=['SPHERE', 'CYLINDER', 'SLAB']
    )
    par_disc_type = Switch(
        default='EQUIDISTANT_PAR', 
        valid=['EQUIDISTANT_PAR', 'EQUIVOLUME_PAR', 'USER_DEFINED_PAR']
    )
    par_disc_vector = DependentlySizedRangedList(lb=0, ub=1, dep='par_disc_vector_length')
    
    par_boundary_order = RangedInteger(lb=1, ub=2, default=2)

    use_analytic_jacobian = Bool(default=True)
    reconstruction = Switch(default='WENO', valid=['WENO'])
    
    gs_type = Bool(default=True)
    max_krylov = UnsignedInteger(default=0)
    max_restarts = UnsignedInteger(default=10)
    schur_safety = UnsignedFloat(default=1.0e-8)

    fix_zero_surface_diffusion = Bool(default=False)
    
    _parameters = DiscretizationParametersBase._parameters + [
        'ncol', 'npar', 
        'par_geom', 'par_disc_type', 'par_disc_vector', 'par_boundary_order', 
        'use_analytic_jacobian', 'reconstruction', 
        'gs_type', 'max_krylov', 'max_restarts', 'schur_safety',
        'fix_zero_surface_diffusion',
    ]
    _dimensionality = ['ncol', 'npar']
        
    @property
    def par_disc_vector_length(self):
        return self.npar + 1
class COBYLA(SciPyInterface):
    """Class from scipy for optimization with COBYLA as method for the
    solver.

    This class is a wrapper for the method COBYLA from the optimization
    suite of the scipy interface. It defines the solver options in the local
    variable options as a dictionary and implements the abstract method run for
    running the optimization.
    """
    rhobeg = UnsignedFloat(default=1)
    maxiter = UnsignedInteger(default=1000)
    disp = Bool(default=False)
    catol = UnsignedFloat(default=0.0002)
    _options = ['rhobeg', 'maxiter', 'disp', 'catol']
class ZoneBaseClass(UnitBaseClass):
    n_columns = UnsignedInteger()
    flow_direction = Integer(default=1)

    def __init__(self,
                 n_comp,
                 name,
                 n_columns=1,
                 flow_direction=1,
                 initial_state=None,
                 *args,
                 **kwargs):
        self.n_columns = n_columns
        self.flow_direction = flow_direction
        self.initial_state = initial_state

        self._inlet_unit = Cstr(n_comp, f'{name}_inlet')
        self._inlet_unit.V = 1e-6
        self._outlet_unit = Cstr(n_comp, f'{name}_outlet')
        self._outlet_unit.V = 1e-6

        super().__init__(n_comp, name, *args, **kwargs)

    @property
    def initial_state(self):
        return self._initial_state

    @initial_state.setter
    def initial_state(self, initial_state):
        if initial_state is None:
            self._initial_state = initial_state
            return

        if not isinstance(initial_state, list):
            initial_state = self.n_columns * [initial_state]

        if len(initial_state) != self.n_columns:
            raise CADETProcessError(f"Expected size {self.n_columns}")
        self._initial_state = initial_state

    @property
    def inlet_unit(self):
        return self._inlet_unit

    @property
    def outlet_unit(self):
        return self._outlet_unit
class ConsistencySolverParametersGroup(ParametersGroup):
    """Class for defining the consistency solver parameters for cadet.

    See also
    --------
    ParametersGroup
    """
    solver_name = Switch(
        default='LEVMAR', 
        valid=['LEVMAR', 'ATRN_RES', 'ARTN_ERR', 'COMPOSITE']
    )
    init_damping = UnsignedFloat(default=0.01)
    min_damping = UnsignedFloat(default=0.0001)
    max_iterations = UnsignedInteger(default=50)
    subsolvers = Switch(
        default='LEVMAR', 
        valid=['LEVMAR', 'ATRN_RES', 'ARTN_ERR']
    )

    _parameters = [
        'solver_name', 'init_damping', 'min_damping', 
        'max_iterations', 'subsolvers'
    ]    
class OptimizationResults(metaclass=StructMeta):
    """Class for storing optimization results including the solver configuration

    Attributes
    ----------
    optimization_problem : OptimizationProblem
        Optimization problem
    evaluation_object : obj
        Evaluation object in optimized state.
    solver_name : str
        Name of the solver used to simulate the process
    solver_parameters : dict
        Dictionary with parameters used by the solver
    exit_flag : int
        Information about the solver termination.
    exit_message : str
        Additional information about the solver status
    time_elapsed : float
        Execution time of simulation.
    x : list
        Values of optimization variables at optimum.
    f : np.ndarray
        Value of objective function at x.
    c : np.ndarray
        Values of constraint function at x
    """
    x0 = List()
    solver_name = String()
    solver_parameters = Dict()
    exit_flag = UnsignedInteger()
    exit_message = String()
    time_elapsed = UnsignedFloat()
    x = List()
    f = NdArray()
    c = NdArray()
    performance = Dict()

    def __init__(
            self, optimization_problem, evaluation_object,
            solver_name, solver_parameters, exit_flag, exit_message,
            time_elapsed, x, f, c, performance, frac=None, history=None
        ):

        self.optimization_problem = optimization_problem
        self.evaluation_object = evaluation_object

        self.solver_name = solver_name
        self.solver_parameters = solver_parameters

        self.exit_flag = exit_flag
        self.exit_message = exit_message
        self.time_elapsed = time_elapsed

        self.x = x
        self.f = f
        if c is not None:
            self.c = c

        self.performance = performance

        self.frac = frac
        
        self.history = history


    def to_dict(self):
        return {
            'optimization_problem': self.optimization_problem.name,
            'optimization_problem_parameters':
                self.optimization_problem.parameters,
            'evaluation_object_parameters':
                self.evaluation_object.parameters,
            'x0': self.optimization_problem.x0,
            'solver_name': self.solver_name,
            'solver_parameters': self.solver_parameters,
            'exit_flag': self.exit_flag,
            'exit_message': self.exit_message,
            'time_elapsed': self.time_elapsed,
            'x': self.x,
            'f': self.f.tolist(),
            'c': self.c.tolist(),
            'performance': self.performance,
            'git': {
                'chromapy_branch': str(settings.repo.active_branch),
                'chromapy_commit': settings.repo.head.object.hexsha
            }
        }

    def save(self, directory):
        path = os.path.join(settings.project_directory, directory, 'results.json')
        with open(path, 'w') as f:
            json.dump(self.to_dict(), f, indent=4)

    def plot_solution(self):
        pass
Пример #16
0
class ReactionBaseClass(metaclass=StructMeta):
    """Abstract base class for parameters of binding models.

    Attributes
    ----------
    n_comp : UnsignedInteger
        number of components.
    parameters : dict
        dict with parameter values.
    name : String
        name of the binding model.
    """
    name = String()
    n_comp = UnsignedInteger()
    
    _parameter_names = []

    def __init__(self, component_system, name=None):
        self.component_system = component_system
        self.name = name
        
        self._parameters = {
            param: getattr(self, param)
            for param in self._parameter_names
        }
        
    @property
    def model(self):
        return self.__class__.__name__
    
    @property
    def component_system(self):
        return self._component_system

    @component_system.setter
    def component_system(self, component_system):
        if not isinstance(component_system, ComponentSystem):
            raise TypeError('Expected ComponentSystem')
        self._component_system = component_system
    
    @property
    def n_comp(self):
        return self.component_system.n_comp
    
    @property
    def parameters(self):
        """dict: Dictionary with parameter values.
        """
        return {param: getattr(self, param) for param in self._parameter_names}

    @parameters.setter
    def parameters(self, parameters):
        for param, value in parameters.items():
            if param not in self._parameter_names:
                raise CADETProcessError('Not a valid parameter')
            setattr(self, param, value)


    def __repr__(self):
        return '{}(n_comp={}, name=\'{}\')'.format(self.__class__.__name__,
            self.n_comp, self.name)

    def __str__(self):
        return self.name
class FlowSheet(metaclass=StructMeta):
    """Class to design process flow sheet.

    In this class, UnitOperation models are added and connected in a flow
    sheet.

    Attributes
    ----------
    n_comp : UnsignedInteger
        Number of components of the units in the flow sheet.
    name : String
        Name of the FlowSheet.
    units : list
        UnitOperations in the FlowSheet.
    connections : dict
        Connections of UnitOperations.
    output_states : dict
        Split ratios of outgoing streams of UnitOperations.
    """

    name = String()
    n_comp = UnsignedInteger()
    
    def __init__(self, component_system, name=None):
        self.component_system = component_system
        self.name = name
        self._units = []
        self._feed_sources = []
        self._eluent_sources = []
        self._chromatogram_sinks = []
        self._connections = Dict()
        self._output_states = Dict()
        self._flow_rates = Dict()
        self._parameters = Dict()
        self._section_dependent_parameters = Dict()
        self._polynomial_parameters = Dict()

    @property
    def component_system(self):
        return self._component_system

    @component_system.setter
    def component_system(self, component_system):
        if not isinstance(component_system, ComponentSystem):
            raise TypeError('Expected ComponentSystem')
        self._component_system = component_system
        
    @property
    def n_comp(self):
        return self.component_system.n_comp
            
    def _unit_name_decorator(func):
        def wrapper(self, unit, *args, **kwargs):
            """Enable calling functions with unit object or unit name.
            """
            if isinstance(unit, str):
                try:
                    unit = self.units_dict[unit]
                except KeyError:
                    raise CADETProcessError('Not a valid unit')
            return func(self, unit, *args, **kwargs)

        return wrapper
    
    def update_parameters(self):
        for unit in self.units:
            self._parameters[unit.name] = unit.parameters
            self._section_dependent_parameters[unit.name] = \
                unit.section_dependent_parameters
            self._polynomial_parameters[unit.name] = unit.polynomial_parameters
        
        self._parameters['output_states'] = {
            unit.name: self.output_states[unit] for unit in self.units
        }
        
        self._section_dependent_parameters['output_states'] = {
            unit.name: self.output_states[unit] 
            for unit in self.units
        }
        
    def update_parameters_decorator(func):
        def wrapper(self, *args, **kwargs):
            """Update parameters dict to save time.
            """
            results = func(self, *args, **kwargs)
            self.update_parameters()
            
            return results
        return wrapper

    @property
    def units(self):
        """list: list of all unit_operations in the flow sheet.
        """
        return self._units

    @property
    def units_dict(self):
        """dict: Unit names and objects.
        """
        return {unit.name: unit for unit in self.units}
    
    @property
    def unit_names(self):
        """list: Unit names
        """
        return [unit.name for unit in self.units]
    
    @property
    def number_of_units(self):
        """int: Number of unit operations in the FlowSheet.
        """
        return len(self._units)

    @_unit_name_decorator
    def get_unit_index(self, unit):
        """Return the unit index of the unit.

        Parameters
        ----------
        unit : UnitBaseClass
            UnitBaseClass object of which the index is to be returned.

        Raises
        ------
        CADETProcessError
            If unit does not exist in the current flow sheet.

        Returns
        -------
        unit_index : int
            Returns the unit index of the unit_operation.
        """
        if unit not in self.units:
            raise CADETProcessError('Unit not in flow sheet')

        return self.units.index(unit)

    @property
    def sources(self):
        """list: All UnitOperations implementing the SourceMixin interface.
        """
        return [unit for unit in self._units if isinstance(unit, SourceMixin)]

    @property
    def sinks(self):
        """list: All UnitOperations implementing the SinkMixin interface.
        """
        return [unit for unit in self._units if isinstance(unit, SinkMixin)]

    @property
    def units_with_binding(self):
        """list: UnitOperations with binding models.
        """
        return [unit for unit in self._units
                if not isinstance(unit.binding_model, NoBinding)]

    @update_parameters_decorator
    def add_unit(
            self, unit, 
            feed_source=False, eluent_source=False, chromatogram_sink=False
        ):
        """Add unit to the flow sheet.

        Parameters
        ----------
        unit : UnitBaseClass
            UnitBaseClass object to be added to the flow sheet.
        feed_source : bool
            If True, add unit to feed sources.
        eluent_source : bool
            If True, add unit to eluent sources.
        chromatogram_sink : bool
            If True, add unit to chromatogram sinks.

        Raises
        ------
        TypeError
            If unit is no instance of UnitBaseClass.
        CADETProcessError
            If unit already exists in flow sheet.
            If n_comp does not match with FlowSheet.

        See Also
        --------
        remove_unit
        """
        if not isinstance(unit, UnitBaseClass):
            raise TypeError('Expected UnitOperation')

        if unit in self._units:
            raise CADETProcessError('Unit already part of System')

        if unit.component_system is not self.component_system:
            raise CADETProcessError('Component systems do not match.')

        self._units.append(unit)
        self._connections[unit] = Dict({
            'origins': [], 
            'destinations': [],
        })
        self._output_states[unit] = []
        self._flow_rates[unit] = []
        
        super().__setattr__(unit.name, unit)

        if feed_source:
            self.add_feed_source(unit)
        if eluent_source:
            self.add_eluent_source(unit)
        if chromatogram_sink:
            self.add_chromatogram_sink(unit)


    @update_parameters_decorator
    def remove_unit(self, unit):
        """Remove unit from flow sheet.

        Removes unit from the list. Tries to remove units which are twice
        located as desinations. For this the origins and destinations are
        deleted for the unit. Raises a CADETProcessError if an ValueError is
        excepted. If the unit is specified as feed_source, eluent_source
        or chromatogram_sink, the corresponding attributes are deleted.

        Parameters
        ----------
        unit : UnitBaseClass
            UnitBaseClass object to be removed to the flow sheet.

        Raises
        ------
        CADETProcessError
            If unit does not exist in the flow sheet.

        See Also
        --------
        add_unit
        feed_source
        eluent_source
        chromatogram_sink
        """
        if unit not in self.units:
            raise CADETProcessError('Unit not in flow sheet')

        if unit is self.feed_sources:
            self.remove_feed_source(unit)
        if unit is self.eluent_sources:
            self.remove_eluent_source(unit)
        if unit is self.chromatogram_sinks:
            self.remove_chromatogram_sink(unit)

        origins = self.connections[unit].origins.copy()
        for origin in origins:
            self.remove_connection(origin, unit)

        destinations = self.connections[unit].destinations.copy()
        for destination in destinations:
            self.remove_connection(unit, destination)

        self._units.remove(unit)
        self._connections.pop(unit)
        self._output_states.pop(unit)
        self.__dict__.pop(unit.name)

    @property
    def connections(self):
        """dict: In- and outgoing connections for each unit.

        See Also
        --------
        add_connection
        remove_connection
        """
        return self._connections
    
    @update_parameters_decorator
    def add_connection(self, origin, destination):
        """Add connection between units 'origin' and 'destination'.

        Parameters
        ----------
        origin : UnitBaseClass
            UnitBaseClass from which the connection originates.
        destination : UnitBaseClass
            UnitBaseClass where the connection terminates.

        Raises
        ------
        CADETProcessError
            If origin OR destination do not exist in the current flow sheet.
            If connection already exists in the current flow sheet.

        See Also
        --------
        connections
        remove_connection
        output_state
        """
        if origin not in self._units:
            raise CADETProcessError('Origin not in flow sheet')
        if destination not in self._units:
            raise CADETProcessError('Destination not in flow sheet')
        
        if destination in self.connections[origin].destinations:
            raise CADETProcessError('Connection already exists')

        self._connections[origin].destinations.append(destination)
        self._connections[destination].origins.append(origin)        
        
        self.set_output_state(origin, 0)

    @update_parameters_decorator
    def remove_connection(self, origin, destination):
        """Remove connection between units 'origin' and 'destination'.

        Parameters
        ----------
        origin : UnitBaseClass
            UnitBaseClass from which the connection originates.
        destination : UnitBaseClass
            UnitBaseClass where the connection terminates.

        Raises
        ------
        CADETProcessError
            If origin OR destination do not exist in the current flow sheet.
            If connection does not exists in the current flow sheet.

        See Also
        --------
        connections
        add_connection
        """
        if origin not in self._units:
            raise CADETProcessError('Origin not in flow sheet')
        if destination not in self._units:
            raise CADETProcessError('Destination not in flow sheet')

        try:
            self._connections[origin].destinations.remove(destination)
            self._connections[destination].origins.remove(origin)
        except KeyError:
            raise CADETProcessError('Connection does not exist.')

    @property
    def output_states(self):
        return self._output_states
    
    @_unit_name_decorator
    @update_parameters_decorator
    def set_output_state(self, unit, state):
        """Set split ratio of outgoing streams for UnitOperation.
        
        Parameters
        ----------
        unit : UnitBaseClass
            UnitOperation of flowsheet.
        state : int or list of floats
            new output state of the unit. 

        Raises
        ------
        CADETProcessError
            If unit not in flowSheet
            If state is integer and the state >= the state_length.
            If the length of the states is unequal the state_length.
            If the sum of the states is not equal to 1.
        """
        if unit not in self._units:
            raise CADETProcessError('Unit not in flow sheet')
            
        state_length = len(self.connections[unit].destinations)

        if state_length == 0:
            output_state = []

        if isinstance(state, (int, np.int64)):
            if state >= state_length:
                raise CADETProcessError('Index exceeds destinations')

            output_state = [0] * state_length
            output_state[state] = 1

        else:
            if len(state) != state_length:
                raise CADETProcessError(
                    'Expected length {}.'.format(state_length))

            elif sum(state) != 1:
                raise CADETProcessError('Sum of fractions must be 1')

            output_state = state

        self._output_states[unit] = output_state                    

    
    def get_flow_rates(self, state=None):
        """Calculate flow rate for all connections.unit operation flow rates.
        
        If an additional state is passed, it will b
        
        Parameters
        ----------
        state : Dict, optional
            Output states

        Returns
        -------
        flow_rates : Dict
            Volumetric flow rate of each unit operation.

        """
        flow_rates = {
            unit.name: unit.flow_rate for unit in self.sources
        }
        output_states = self.output_states

        if state is not None:
            for param, value in state.items():
                param = param.split('.')
                unit_name = param[1]
                param_name = param[-1]
                if param_name == 'flow_rate':
                    flow_rates[unit_name] = value[0]
                elif unit_name == 'output_states':
                    unit = self.units_dict[param_name]
                    output_states[unit] = list(value.ravel())
        
        def list_factory():
            return [0,0,0,0]
        
        total_flow_rates = {unit.name: list_factory() for unit in self.units}
        destination_flow_rates = {
            unit.name: defaultdict(list_factory) for unit in self.units
        }
        
        for i in range(4):
            solution = self.solve_flow_rates(flow_rates, output_states, i)
            if solution is not None:
                for unit_index, unit in enumerate(self.units):
                    total_flow_rates[unit.name][i] = \
                        float(solution['Q_total_{}'.format(unit_index)])
                    
                    for destination in self.connections[unit].destinations:
                        destination_index = self.get_unit_index(destination)
                        destination_flow_rates[unit.name][destination.name][i] = \
                            float(solution['Q_{}_{}'.format(unit_index, destination_index)])
        
        flow_rates = Dict()
        for unit in self.units:
            flow_rates[unit.name].total = np.array(total_flow_rates[unit.name])
            for destination, flow_rate in destination_flow_rates[unit.name].items():
                flow_rates[unit.name].destinations[destination] = np.array(flow_rate)
        
        return flow_rates                

    def solve_flow_rates(self, source_flow_rates, output_states, coeff=0):
        """Solve flow rates of system using sympy.
        
        Because a simple 'push' algorithm cannot be used when closed loops are
        present in a FlowSheet (e.g. SMBs), sympy is used to set up and solve 
        the system of equations.
    
        Parameters
        ----------
        source_flow_rates: dict
            Flow rates of Source UnitOperations.
        output_states: dict
            Output states of all UnitOperations.
        coeff: int
            Polynomial coefficient of flow rates to be solved.
    
        Returns
        -------
        solution : dict
            Solution of the flow rates in the system
            
        Note
        ----
        Since dynamic flow rates can be described as cubic polynomials, the
        flow rates are solved individually for all coefficients.
        """
        coeffs = np.array(
            [source_flow_rates[unit.name][coeff] for unit in self.sources]
        )
        if not np.any(coeffs):
            return None
        
        # Setup lists for symbols
        unit_total_flow_symbols = sym.symbols(
            'Q_total_0:{}'.format(self.number_of_units)
        )
        unit_inflow_symbols = []
        unit_outflow_symbols = []
        
        unit_total_flow_eq = []
        unit_outflow_eq = []
        
        # Setup symbolic equations
        for unit_index, unit in enumerate(self.units):
            if isinstance(unit, SourceMixin):
                unit_total_flow_eq.append(
                    sym.Add(
                        unit_total_flow_symbols[unit_index], 
                        - float(source_flow_rates[unit.name][coeff])
                    )
                )
            else:
                unit_i_inflow_symbols = []
                
                for origin in self.connections[unit].origins:
                    origin_index = self.get_unit_index(origin)
                    unit_i_inflow_symbols.append(
                        sym.symbols('Q_{}_{}'.format(origin_index, unit_index))
                    )
                    
                unit_i_total_flow_eq = sym.Add(
                    *unit_i_inflow_symbols, -unit_total_flow_symbols[unit_index]
                )
                
                unit_inflow_symbols += unit_i_inflow_symbols
                unit_total_flow_eq.append(unit_i_total_flow_eq)
                
            if not isinstance(unit, Sink):
                output_state = output_states[unit]
                unit_i_outflow_symbols = []
                
                for destination in self.connections[unit].destinations:
                    destination_index = self.get_unit_index(destination)
                    unit_i_outflow_symbols.append(
                        sym.symbols('Q_{}_{}'.format(unit_index, destination_index))
                    )
                    
                unit_i_outflow_eq = [
                    sym.Add(
                        unit_i_outflow_symbols[dest],
                        -unit_total_flow_symbols[unit_index]*output_state[dest]
                    )
                    for dest in range(len(self.connections[unit].destinations))
                ]
                                     
                unit_outflow_symbols += unit_i_outflow_symbols
                unit_outflow_eq += unit_i_outflow_eq
                
        # Solve system of equations
        solution = sym.solve(
            unit_total_flow_eq + unit_outflow_eq, 
            (*unit_total_flow_symbols, *unit_inflow_symbols, *unit_outflow_symbols)
        )
        solution = {str(key): value for key, value in solution.items()}
        
        return solution
    
    @property
    def feed_sources(self):
        """list: List of sources considered for calculating recovery yield.
        """
        return self._feed_sources

    @_unit_name_decorator
    def add_feed_source(self, feed_source):
        """Add source to list of units to be considered for recovery.

        Parameters
        ----------
        feed_source : SourceMixin
            Unit to be added to list of feed sources

        Raises
        ------
        CADETProcessError
            If unit is not in a source object
            If unit is already marked as feed source
        """
        if feed_source not in self.sources:
            raise CADETProcessError('Expected Source')
        if feed_source in self._feed_sources:
            raise CADETProcessError(
                '{} is already eluent source'.format(feed_source)
            )
        self._feed_sources.append(feed_source)

    @_unit_name_decorator
    def remove_feed_source(self, feed_source):
        """Remove source from list of units to be considered for recovery.

        Parameters
        ----------
        feed_source : SourceMixin
            Unit to be removed from list of feed sources.
        """
        if feed_source not in self._feed_sources:
            raise CADETProcessError('Unit \'{}\' is not a feed source.'.format(
                    feed_source))
        self._feed_sources.remove(feed_source)

    @property
    def eluent_sources(self):
        """list: List of sources to be considered for eluent consumption.
        """
        return self._eluent_sources

    @_unit_name_decorator
    def add_eluent_source(self, eluent_source):
        """Add source to list of units to be considered for eluent consumption.

        Parameters
        ----------
        eluent_source : SourceMixin
            Unit to be added to list of eluent sources.

        Raises
        ------
        CADETProcessError
            If unit is not in a source object
            If unit is already marked as eluent source
        """
        if eluent_source not in self.sources:
            raise CADETProcessError('Expected Source')
        if eluent_source in self._eluent_sources:
            raise CADETProcessError('{} is already eluent source'.format(
                    eluent_source))
        self._eluent_sources.append(eluent_source)

    @_unit_name_decorator
    def remove_eluent_source(self, eluent_source):
        """Remove source from list of units to be considered eluent consumption.

        Parameters
        ----------
        eluent_source : SourceMixin
            Unit to be added to list of eluent sources.
        
        Raises
        ------
        CADETProcessError
            If unit is not in eluent sources
        """
        if eluent_source not in self._eluent_sources:
            raise CADETProcessError('Unit \'{}\' is not an eluent source.'.format(
                    eluent_source))
        self._eluent_sources.remove(eluent_source)

    @property
    def chromatogram_sinks(self):
        """list: List of sinks to be considered for fractionation.
        """
        return self._chromatogram_sinks

    @_unit_name_decorator
    def add_chromatogram_sink(self, chromatogram_sink):
        """Add sink to list of units to be considered for fractionation.

        Parameters
        ----------
        chromatogram_sink : SinkMixin
            Unit to be added to list of chromatogram sinks.

        Raises
        ------
        CADETProcessError
            If unit is not a sink object.
            If unit is already marked as chromatogram sink.
        """
        if chromatogram_sink not in self.sinks:
            raise CADETProcessError('Expected Sink')
        if chromatogram_sink in self._chromatogram_sinks:
            raise CADETProcessError(
                '{} is already chomatogram sink'.format(chromatogram_sink)
            )
        self._chromatogram_sinks.append(chromatogram_sink)

    @_unit_name_decorator
    def remove_chromatogram_sink(self, chromatogram_sink):
        """Remove sink from list of units to be considered for fractionation.

        Parameters
        ----------
        chromatogram_sink : SinkMixin
            Unit to be added to list of chromatogram sinks.

        Raises
        ------
        CADETProcessError
            If unit is not a chromatogram sink.
        """
        if chromatogram_sink not in self._chromatogram_sinks:
            raise CADETProcessError(
                'Unit \'{}\' is not a chromatogram sink.'.format(chromatogram_sink)
            )
        self._chromatogram_sinks.remove(chromatogram_sink)


    @property
    def parameters(self):
        return self._parameters

    @parameters.setter
    def parameters(self, parameters):
        try:
            output_states = parameters.pop('output_states')
            for unit, state in output_states.items():
                unit = self.units_dict[unit]
                self.set_output_state(unit, state)
        except KeyError:
            pass
        
        for unit, params in parameters.items():
            if unit not in self.units_dict:
                raise CADETProcessError('Not a valid unit')
            self.units_dict[unit].parameters = params
            
        self.update_parameters()

    @property
    def section_dependent_parameters(self):
        return self._section_dependent_parameters

    @property
    def polynomial_parameters(self):
        return self._polynomial_parameters

    @property
    def initial_state(self):
        initial_state = {unit.name: unit.initial_state for unit in self.units}

        return initial_state

    @initial_state.setter
    def initial_state(self, initial_state):
        for unit, st in initial_state.items():
            if unit not in self.units_dict:
                raise CADETProcessError('Not a valid unit')
            self.units_dict[unit].initial_state = st
            
            
    def __getitem__(self, unit_name):
        """Make FlowSheet substriptable s.t. units can be used as keys.

        Parameters
        ----------
        unit_name : str
            Name of the unit.

        Returns
        -------
        unit : UnitBaseClass
            UnitOperation of flowsheet.

        Raises
        ------
        KeyError
            If unit not in flowSheet
        """
        try:
            return self.units_dict[unit_name]
        except KeyError:
            raise KeyError('Not a valid unit')


    def __contains__(self, item):
        """Check if an item is part of units.

        Parameters
        ----------
        item : UnitBaseClass
            item to be searched

        Returns
        -------
        Bool : True if item is in units, otherwise False.

        Note
        ----
        maybe deficient in documentation.
        """
        if (item in self._units) or (item in self.unit_names):
            return True
        else:
            return False
Пример #18
0
class PymooInterface(SolverBase):
    """Wrapper around pymoo.
    """
    seed = UnsignedInteger(default=12345)
    x_tol = UnsignedFloat(default=1e-8)
    cv_tol = UnsignedFloat(default=1e-6)
    f_tol = UnsignedFloat(default=0.0025)
    pop_size = UnsignedInteger(default=100)
    nth_gen = UnsignedInteger(default=1)
    n_last = UnsignedInteger(default=30)
    n_max_gen = UnsignedInteger(default=100)
    n_max_evals = UnsignedInteger(default=100000)
    n_cores = UnsignedInteger(default=0)
    _options = [
        'x_tol',
        'cv_tol',
        'f_tol',
        'nth_gen',
        'n_last',
        'n_max_gen',
        'n_max_evals',
    ]

    def run(self, optimization_problem, use_checkpoint=True):
        """Solve the optimization problem using the functional pymoo implementation.
        
        Returns
        -------
        results : OptimizationResults
            Optimization results including optimization_problem and solver
            configuration.

        See Also
        --------
        evaluate_objectives
        options
        """
        self.optimization_problem = optimization_problem

        ieqs = [
            lambda x: optimization_problem.evaluate_linear_constraints(x)[0]
        ]

        self.problem = PymooProblem(optimization_problem, self.n_cores)

        if use_checkpoint and os.path.isfile(self.pymoo_checkpoint_path):
            random.seed(self.seed)
            algorithm, = np.load(self.pymoo_checkpoint_path,
                                 allow_pickle=True).flatten()
        else:
            algorithm = self.setup_algorithm()

        start = time.time()
        while algorithm.has_next():
            algorithm.next()
            np.save(self.pymoo_checkpoint_path, algorithm)
            print(algorithm.result().X, algorithm.result().F)

        elapsed = time.time() - start
        res = algorithm.result()

        x = res.X
        eval_object = optimization_problem.set_variables(x, make_copy=True)
        if self.optimization_problem.evaluator is not None:
            frac = optimization_problem.evaluator.simulate_and_fractionate(
                eval_object, )
            performance = frac.performance
        else:
            frac = None
            performance = optimization_problem.evaluate(x, force=True)

        results = OptimizationResults(
            optimization_problem=optimization_problem,
            evaluation_object=eval_object,
            solver_name=str(self),
            solver_parameters=self.options,
            exit_flag=0,
            exit_message='success',
            time_elapsed=elapsed,
            x=res.X.tolist(),
            f=res.F,
            c=res.CV,
            frac=frac,
            performance=performance.to_dict(),
            history=res.history,
        )
        return results

    @property
    def pymoo_checkpoint_path(self):
        pymoo_checkpoint_path = os.path.join(
            settings.project_directory,
            self.optimization_problem.name + '/pymoo_checkpoint.npy')
        return pymoo_checkpoint_path

    @property
    def population_size(self):
        if self.pop_size is None:
            return min(200, max(25 * self.optimization_problem.n_variables,
                                50))
        else:
            return self.pop_size

    @property
    def max_number_of_generations(self):
        if self.n_max_gen is None:
            return min(100, max(10 * self.optimization_problem.n_variables,
                                40))
        else:
            return self.n_max_gen

    def setup_algorithm(self):
        algorithm = pymoo.factory.get_algorithm(
            str(self),
            ref_dirs=self.ref_dirs,
            pop_size=self.population_size,
            sampling=self.optimization_problem.create_initial_values(
                self.population_size, method='chebyshev', seed=self.seed),
            repair=RoundIndividuals(self.optimization_problem),
        )
        algorithm.setup(self.problem,
                        termination=self.termination,
                        seed=self.seed,
                        verbose=True)
        return algorithm

    @property
    def termination(self):
        termination = MultiObjectiveDefaultTermination(
            x_tol=self.x_tol,
            cv_tol=self.cv_tol,
            f_tol=self.f_tol,
            nth_gen=self.nth_gen,
            n_last=self.n_last,
            n_max_gen=self.n_max_gen,
            n_max_evals=self.n_max_evals)
        return termination

    @property
    def ref_dirs(self):
        ref_dirs = get_reference_directions(
            "energy",
            self.optimization_problem.n_objectives,
            self.population_size,
            seed=1)
        return ref_dirs
Пример #19
0
class SolutionSolid(BaseSolution):
    """Solid phase solution inside the particles.
    
    Particle_solid: NCOL * NRAD * sum_{j}^{NPARTYPE}{NBOUND,j * NPAR,j}
    """

    n_bound = UnsignedInteger()

    _coordinates = [
        'axial_coordinates', 'radial_coordinates', 'particle_coordinates'
    ]

    def __init__(self,
                 component_system,
                 n_bound,
                 time,
                 solution,
                 axial_coordinates=None,
                 radial_coordinates=None,
                 particle_coordinates=None):
        self.component_system = component_system
        self.n_bound = n_bound
        self.time = time
        self.axial_coordinates = axial_coordinates
        # Account for dimension reduction in case of only one cell (e.g. LRMP)
        if radial_coordinates is not None and len(radial_coordinates) == 1:
            radial_coordinates = None
        self.radial_coordinates = radial_coordinates
        # Account for dimension reduction in case of only one cell (e.g. CSTR)
        if particle_coordinates is not None and len(particle_coordinates) == 1:
            particle_coordinates = None
        self.particle_coordinates = particle_coordinates
        self.solution = solution

    @property
    def n_comp(self):
        return self.component_system.n_comp * self.n_bound

    @property
    def ncol(self):
        if self.axial_coordinates is None:
            return None
        else:
            return len(self.axial_coordinates)

    @property
    def nrad(self):
        if self.radial_coordinates is None:
            return
        return len(self.radial_coordinates)

    @property
    def npar(self):
        if self.particle_coordinates is None:
            return
        return len(self.particle_coordinates)

    def _plot_1D(self, t, ymax):
        x = self.axial_coordinates

        if not self.time[0] <= t <= self.time[-1]:
            raise ValueError("Time exceeds bounds.")
        t_i = np.where(t <= self.time)[0][0]
        y = self.solution[t_i, :]

        if ymax is None:
            ymax = 1.1 * np.max(y)

        fig, ax = plotting.setup_figure()
        ax.plot(x, y)

        plotting.add_text(ax, f'time = {t:.2f} s')

        layout = plotting.Layout()
        layout.x_label = '$z~/~m$'
        layout.y_label = '$c~/~mM$'
        layout.labels = self.component_system.labels
        layout.ylim = (0, ymax)
        plotting.set_layout(fig, ax, layout)

        return fig, ax

    def _plot_2D(self, t, comp, state, vmax):
        x = self.axial_coordinates
        y = self.particle_coordinates

        if not self.time[0] <= t <= self.time[-1]:
            raise ValueError("Time exceeds bounds.")
        t_i = np.where(t <= self.time)[0][0]
        c_i = comp * self.n_bound + state
        v = self.solution[t_i, :, :, c_i].transpose()

        if vmax is None:
            vmax = v.max()

        fig, ax = plotting.setup_figure()
        mesh = ax.pcolormesh(x, y, v, shading='gouraud', vmin=0, vmax=vmax)

        plotting.add_text(ax, f'time = {t:.2f} s')

        layout = plotting.Layout()
        layout.title = f'Solid phase concentration, comp={comp}, state={state}'
        layout.x_label = '$z~/~m$'
        layout.y_label = '$r~/~m$'
        layout.labels = self.component_system.labels[c_i]
        plotting.set_layout(fig, ax, layout)
        fig.colorbar(mesh)

        return fig, ax, mesh

    @plotting.save_fig
    def plot_at_time(self, t, comp=0, state=0, vmax=None):
        """Plot bulk solution over spce at given time.

        Parameters
        ----------
        t : float
            time for plotting
        comp : int, optional
            component index
        state : int, optional
            bound state
        vmax : float, optional
            Maximum values for plotting.

        See also
        --------
        CADETProcess.plotting
        """
        if self.npar is None:
            fig, ax = self._plot_1D(t, vmax)
        else:
            fig, ax, mesh = self._plot_2D(t, comp, state, vmax)
        return ax
class DEAP(SolverBase):
    """ Adapter for optimization with an Genetic Algorithm called DEAP.

    Defines the solver options, the statistics, the history, the logbook and
    the toolbox for recording the optimization progess. It implements the
    abstract run method for running the optimization with DEAP.

    Attributes
    ----------
    optimizationProblem: optimizationProblem
        Given optimization problem to be solved.
    options : dict
        Solver options, default set to None, if nothing is given.

    See also
    --------
    base
    tools
    Statistics
    """
    cxpb = UnsignedFloat(default=1)
    mutpb = UnsignedFloat(default=1)
    sig_figures = UnsignedInteger(default=3)
    seed = UnsignedInteger(default=12345)
    _options = ['cxpb', 'mutpb', 'sig_figures', 'seed']

    def run(self,
            optimization_problem,
            n_gen=None,
            population_size=None,
            use_multicore=True,
            use_checkpoint=True):

        self.optimization_problem = optimization_problem
        # Abbreviations
        lb = optimization_problem.lower_bounds
        ub = optimization_problem.upper_bounds
        n_vars = optimization_problem.n_variables

        # Settings
        if population_size is None:
            population_size = min(
                200, max(25 * len(optimization_problem.variables), 50))
        if n_gen is None:
            n_gen = min(100, max(10 * len(optimization_problem.variables), 40))

        # NSGA3 Settings
        n_obj = 1
        p = 4
        ref_points = tools.uniform_reference_points(n_obj, p)

        # !!! emo functions breaks if n_obj == 1, this is a temporary fix
        if n_obj == 1:

            def sortNDHelperB(best, worst, obj, front):
                if obj < 0:
                    return
                sortNDHelperB(best, worst, obj, front)

            tools.emo.sortNDHelperB = sortNDHelperB

        # Definition of classes
        creator.create("FitnessMin", base.Fitness, weights=(-1.0, ) * n_obj)
        creator.create("Individual", list, fitness=creator.FitnessMin)

        # Tools
        toolbox = base.Toolbox()

        # Map for parallel evaluation
        manager = multiprocessing.Manager()
        cache = manager.dict()
        pool = multiprocessing.Pool()
        if use_multicore:
            toolbox.register("map", pool.map)

        # Functions for creating individuals and population
        toolbox.register("individual", tools.initIterate, creator.Individual,
                         optimization_problem.create_initial_values)

        def initIndividual(icls, content):
            return icls(content)

        toolbox.register("individual_guess", initIndividual,
                         creator.Individual)

        def initPopulation(pcls, ind_init, population_size):
            population = optimization_problem.create_initial_values(
                population_size)
            return pcls(ind_init(c) for c in population)

        toolbox.register(
            "population",
            initPopulation,
            list,
            toolbox.individual_guess,
        )

        # Functions for evolution
        toolbox.register("evaluate", self.evaluate, cache=cache)
        toolbox.register("mate",
                         tools.cxSimulatedBinaryBounded,
                         low=lb,
                         up=ub,
                         eta=30.0)
        toolbox.register("mutate",
                         tools.mutPolynomialBounded,
                         low=lb,
                         up=ub,
                         eta=20.0,
                         indpb=1.0 / n_vars)
        toolbox.register("select",
                         tools.selNSGA3,
                         nd="standard",
                         ref_points=ref_points)

        # Round individuals to prevent reevaluation of similar individuals
        def round_individuals():
            def decorator(func):
                def wrapper(*args, **kargs):
                    offspring = func(*args, **kargs)
                    for child in offspring:
                        for index, el in enumerate(child):
                            child[index] = round(el, self.sig_figures)
                    return offspring

                return wrapper

            return decorator

        toolbox.decorate("mate", round_individuals())
        toolbox.decorate("mutate", round_individuals())

        statistics = tools.Statistics(key=lambda ind: ind.fitness.values)
        statistics.register("min", np.min)
        statistics.register("max", np.max)
        statistics.register("avg", np.mean)
        statistics.register("std", np.std)

        # Load checkpoint if present
        checkpoint_path = os.path.join(
            settings.project_directory,
            optimization_problem.name + '/checkpoint.pkl')

        if use_checkpoint and os.path.isfile(checkpoint_path):
            # A file name has been given, then load the data from the file
            with open(checkpoint_path, "rb") as cp_file:
                cp = pickle.load(cp_file)

            self.population = cp["population"]
            start_gen = cp["generation"]
            self.halloffame = cp["halloffame"]
            self.logbook = cp["logbook"]
            random.setstate(cp["rndstate"])
        else:
            # Start a new evolution
            start_gen = 0
            self.halloffame = tools.HallOfFame(maxsize=1)
            self.logbook = tools.Logbook()
            self.logbook.header = "gen", "evals", "std", "min", "avg", "max"

            # Initialize random population
            random.seed(self.seed)
            self.population = toolbox.population(population_size)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [
                ind for ind in self.population if not ind.fitness.valid
            ]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Compile statistics about the population
            record = statistics.compile(self.population)
            self.logbook.record(gen=0, evals=len(invalid_ind), **record)

        # Begin the generational process
        start = time.time()
        for gen in range(start_gen, n_gen):
            self.offspring = algorithms.varAnd(self.population, toolbox,
                                               self.cxpb, self.mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [
                ind for ind in self.offspring if not ind.fitness.valid
            ]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Select the next generation population from parents and offspring
            self.population = toolbox.select(self.population + self.offspring,
                                             population_size)

            # Compile statistics about the new population
            record = statistics.compile(self.population)
            self.logbook.record(gen=gen, evals=len(invalid_ind), **record)
            self.halloffame.update(self.population)

            # Create Checkpoint file
            cp = dict(population=self.population,
                      generation=gen,
                      halloffame=self.halloffame,
                      logbook=self.logbook,
                      rndstate=random.getstate())

            with open(checkpoint_path, "wb") as cp_file:
                pickle.dump(cp, cp_file)

            best = self.halloffame.items[0]
            self.logger.info('Generation {}: x: {}, f: {}'.format(
                str(gen), str(best), str(best.fitness.values[0])))

        elapsed = time.time() - start

        x = self.halloffame.items[0]

        eval_object = optimization_problem.set_variables(x, make_copy=True)
        if self.optimization_problem.evaluator is not None:
            frac = optimization_problem.evaluator.evaluate(eval_object,
                                                           return_frac=True)
            performance = frac.performance
        else:
            frac = None
            performance = optimization_problem.evaluate(x, force=True)
        f = optimization_problem.objective_fun(performance)

        results = OptimizationResults(
            optimization_problem=optimization_problem,
            evaluation_object=eval_object,
            solver_name=str(self),
            solver_parameters=self.options,
            exit_flag=1,
            exit_message='DEAP terminated successfully',
            time_elapsed=elapsed,
            x=list(x),
            f=f,
            c=None,
            frac=frac,
            performance=performance.to_dict())

        return results

    def evaluate(self, ind, cache=None):
        results = self.optimization_problem.evaluate_objectives(ind,
                                                                make_copy=True,
                                                                cache=cache)
        return results
Пример #21
0
class Process(EventHandler):
    """Class for defining the dynamic changes of a flow sheet.

    Attributes
    ----------
    flow_sheet : FlowSheet
        Superstructure of the chromatographic process.
    name : str
        Name of the process object to be simulated.
    system_state : NoneType
        State of the process object, default set to None.
    system_state_derivate : NoneType
        Derivative of the state, default set to None.

    See also
    --------
    EventHandler
    FlowSheet
    ProcessMeta
    Simulator
    """
    _initial_states = ['system_state', 'system_state_derivative']
    _n_cycles = UnsignedInteger(default=1)

    def __init__(self, flow_sheet, name, *args, **kwargs):
        self.flow_sheet = flow_sheet
        self.name = name

        self.system_state = None
        self.system_state_derivative = None

        super().__init__(*args, **kwargs)

    @property
    def n_comp(self):
        return self.flow_sheet.n_comp

    @property
    def flow_sheet(self):
        """FlowSheet: flow sheet of the process model.

        Raises
        -------
        TypeError:
            If flow_sheet is not an instance of FlowSheet.

        Returns
        -------
        flow_sheet : FlowSheet
            Superstructure of the chromatographic process.
        """
        return self._flow_sheet

    @flow_sheet.setter
    def flow_sheet(self, flow_sheet):
        if not isinstance(flow_sheet, FlowSheet):
            raise TypeError('Expected FlowSheet')
        self._flow_sheet = flow_sheet

    @property
    def m_feed(self):
        """ndarray: Mass of the feed components entering the system in one cycle.
        !!! Account for dynamic flow rates and concentrations!
        """
        flow_rate_timelines = self.flow_rate_timelines

        feed_all = np.zeros((self.n_comp, ))
        for feed in self.flow_sheet.feed_sources:
            feed_flow_rate_time_line = flow_rate_timelines[feed.name].total
            feed_signal_param = 'flow_sheet.{}.c'.format(feed.name)
            if feed_signal_param in self.parameter_timelines:
                feed_signal_time_line = self.parameter_timelines[
                    feed_signal_param]
            else:
                feed_signal_time_line = TimeLine()
                feed_section = Section(0,
                                       self.cycle_time,
                                       feed.c,
                                       n_entries=self.n_comp,
                                       degree=3)
                feed_signal_time_line.add_section(feed_section)

            m_i  = [
                integrate.quad(
                    lambda t: \
                        feed_flow_rate_time_line.value(t) \
                        * feed_signal_time_line.value(t)[comp],
                        0, self.cycle_time, points=self.event_times
                    )[0] for comp in range(self.n_comp)
            ]

            feed_all += np.array(m_i)

        return feed_all

    @property
    def V_eluent(self):
        """float: Volume of the eluent entering the system in one cycle.
        """
        flow_rate_timelines = self.flow_rate_timelines

        V_all = 0
        for eluent in self.flow_sheet.eluent_sources:
            eluent_time_line = flow_rate_timelines[eluent.name]['total']
            V_eluent = eluent_time_line.integral()
            V_all += V_eluent

        return float(V_all)

    @property
    def V_solid(self):
        """float: Volume of all solid phase material used in flow sheet.
        """
        return sum(
            [unit.volume_solid for unit in self.flow_sheet.units_with_binding])

    @cached_property_if_locked
    def flow_rate_timelines(self):
        """dict: TimeLine of flow_rate for all unit_operations.
        """
        flow_rate_timelines = {
            unit.name: {
                'total': TimeLine(),
                'destinations': defaultdict(TimeLine)
            }
            for unit in self.flow_sheet.units
        }

        # Create dummy section state for Processes without events
        if len(self.section_states) == 0:
            it = [(None, {})]
        else:
            it = self.section_states.items()

        for i, (time, state) in enumerate(it):
            start = self.section_times[i]
            end = self.section_times[i + 1]

            flow_rates = self.flow_sheet.get_flow_rates(state)

            for unit, flow_rate in flow_rates.items():
                section = Section(start,
                                  end,
                                  flow_rate.total,
                                  n_entries=1,
                                  degree=3)
                flow_rate_timelines[unit]['total'].add_section(section)
                for dest, flow_rate_dest in flow_rate.destinations.items():
                    section = Section(start,
                                      end,
                                      flow_rate_dest,
                                      n_entries=1,
                                      degree=3)
                    flow_rate_timelines[unit]['destinations'][
                        dest].add_section(section)

        return Dict(flow_rate_timelines)

    @cached_property_if_locked
    def flow_rate_section_states(self):
        """dict: Flow rates for all units for every section time.
        """
        section_states = {
            time: {
                unit.name: {
                    'total': [],
                    'destinations': defaultdict(dict)
                }
                for unit in self.flow_sheet.units
            }
            for time in self.section_times[0:-1]
        }

        for sec_time in self.section_times[0:-1]:
            for unit, unit_flow_rates in self.flow_rate_timelines.items():
                section_states[sec_time][unit]['total'] = \
                    unit_flow_rates['total'].coefficients(sec_time)[0]

                for dest, tl in unit_flow_rates.destinations.items():
                    section_states[sec_time][unit]['destinations'][dest] = \
                        tl.coefficients(sec_time)[0]

        return Dict(section_states)

    @property
    def time(self):
        """np.array: Returns time vector for one cycle

        Todo
        ----
        Remove from Process; Check also EventHandler.plot_events()
        
        See Also
        --------
        cycle_time
        _time_complete
        """
        cycle_time = self.cycle_time
        return np.linspace(0, cycle_time, math.ceil(cycle_time))

    @property
    def _time_complete(self):
        """np.array: time vector for mulitple cycles of a process.
        
        See Also
        --------
        time
        _n_cycles
        """
        complete_time = self._n_cycles * self.cycle_time
        indices = self._n_cycles * math.ceil(self.cycle_time) - (
            self._n_cycles - 1)
        return np.round(np.linspace(0, complete_time, indices), 1)

    @property
    def system_state(self):
        return self._system_state

    @system_state.setter
    def system_state(self, system_state):
        self._system_state = system_state

    @property
    def system_state_derivative(self):
        return self._system_state_derivative

    @system_state_derivative.setter
    def system_state_derivative(self, system_state_derivative):
        self._system_state_derivative = system_state_derivative

    @property
    def parameters(self):
        parameters = super().parameters

        parameters['flow_sheet'] = self.flow_sheet.parameters

        return Dict(parameters)

    @parameters.setter
    def parameters(self, parameters):
        try:
            self.flow_sheet.parameters = parameters.pop('flow_sheet')
        except KeyError:
            pass

        super(Process, self.__class__).parameters.fset(self, parameters)

    @property
    def section_dependent_parameters(self):
        parameters = Dict()
        parameters.flow_sheet = self.flow_sheet.section_dependent_parameters

        return parameters

    @property
    def polynomial_parameters(self):
        parameters = Dict()
        parameters.flow_sheet = self.flow_sheet.polynomial_parameters

        return parameters

    @property
    def initial_state(self):
        initial_state = {
            state: getattr(self, state)
            for state in self._initial_states
        }
        initial_state['flow_sheet'] = self.flow_sheet.initial_state

        return initial_state

    @initial_state.setter
    def initial_state(self, initial_state):
        try:
            self.flow_sheet.initial_state = initial_state.pop('flow_sheet')
        except KeyError:
            pass

        for state_name, state_value in initial_state.items():
            if state_name not in self._initial_state:
                raise CADETProcessError('Not an valid state')
            setattr(self, state_name, state_value)

    @property
    def config(self):
        return Dict({
            'parameters': self.parameters,
            'initial_state': self.initial_state
        })

    @config.setter
    def config(self, config):
        self.parameters = config['parameters']
        self.initial_state = config['initial_state']

    @property
    def process_meta(self):
        """ProcessMeta: Meta information of the process.
        
        See Also
        --------
        ProcessResults
        Performance        
        """
        return ProcessMeta(
            cycle_time=self.cycle_time,
            m_feed=self.m_feed,
            V_solid=self.V_solid,
            V_eluent=self.V_eluent,
        )

    def add_inlet_profile(self, unit, time, c, component_index=None, s=1e-6):
        if not isinstance(unit, Source):
            raise TypeError('Expected Source')

        if max(time) > self.cycle_time:
            raise ValueError('Inlet profile exceeds cycle time')

        if component_index == -1:
            # Assume same profile for all components
            if c.ndim > 1:
                raise ValueError('Expected single concentration profile')

            c = np.column_stack([c] * 2)

        elif component_index is None and c.shape[1] != self.n_comp:
            # Assume c is given for all components
            raise CADETProcessError('Number of components does not match')

        for comp in range(self.n_comp):
            tck = interpolate.splrep(time, c[:, comp], s=s)
            ppoly = interpolate.PPoly.from_spline(tck)

            for i, (t, sec) in enumerate(zip(ppoly.x, ppoly.c.T)):
                if i < 3:
                    continue
                elif i > len(ppoly.x) - 5:
                    continue
                evt = self.add_event(f'{unit}_inlet_{comp}_{i-3}',
                                     f'flow_sheet.{unit}.c', np.flip(sec), t,
                                     comp)

    def __str__(self):
        return self.name
Пример #22
0
class SolverBase(metaclass=StructMeta):
    """BaseClass for Solver APIs

    Holds the configuration of the individual solvers and gives an interface for
    calling the run method. The class has to convert the process configuration
    into the APIs configuration format and convert the results back to the
    CADETProcess format.

    Attributes
    ----------
    n_cycles : int
        Number of cycles to be simulated
    n_cycles_min : int
        If simulate_to_stationarity: Minimum number of cycles to be simulated.
    n_cycles_max : int
        If simulate_to_stationarity: Maximum number of cycles to be simulated.
    simulate_to_stationarity : bool
        Simulate until stationarity is reached


    See also
    --------
    Process
    StationarityEvaluator
    """
    n_cycles = UnsignedInteger(default=1)
    evaluate_stationarity = Bool(default=False)
    n_cycles_min = UnsignedInteger(default=3)
    n_cycles_max = UnsignedInteger(default=100)

    def __init__(self, stationarity_evaluator=None):
        self.logger = get_logger('Simulation')

        if stationarity_evaluator is None:
            self._stationarity_evaluator = StationarityEvaluator()
        else:
            self.stationarity_evaluator = stationarity_evaluator
            self.evaluate_stationarity = True

    def simulate(self, process, previous_results=None, **kwargs):
        """Simulate process.

        Depending on the state of evaluate_stationarity, the process is
        simulated until termination criterion is reached.

        Parameters
        ----------
        process : Process
            Process to be simulated
        previous_results : SimulationResults
            Results of previous simulation run for initial conditions.

        Returns
        -------
        results : SimulationResults
            Results the final cycle of the simulation.

        Raises
        ------
        TypeError
            If process is not an instance of Process.

        See also
        --------
        simulate_n_cycles
        simulate_to_stationarity
        run
        """
        if not isinstance(process, Process):
            raise TypeError('Expected Process')

        process.lock = True
        if not self.evaluate_stationarity:
            results = self.simulate_n_cycles(process, self.n_cycles,
                                             previous_results, **kwargs)
        else:
            results = self.simulate_to_stationarity(process, previous_results,
                                                    **kwargs)
        process.lock = False

        return results

    @log_time('Simulation')
    @log_results('Simulation')
    @log_exceptions('Simulation')
    def simulate_n_cycles(self,
                          process,
                          n_cyc,
                          previous_results=None,
                          **kwargs):
        """Simulates process for given number of cycles.

        Parameters
        ----------
        process : Process
            Process to be simulated
        n_cyc : float
            Number of cycles
        previous_results : SimulationResults
            Results of previous simulation run.

        Returns
        -------
        results : SimulationResults
            Results the final cycle of the simulation.

        Raises
        ------
        TypeError
            If process is not an instance of Process.

        See also
        --------
        simulate_n_cycles
        simulate_to_stationarity
        StationarityEvaluator
        run
        """
        if not isinstance(process, Process):
            raise TypeError('Expected Process')

        if previous_results is not None:
            self.set_state_from_results(process, previous_results)
        process._n_cycles = n_cyc

        return self.run(process, **kwargs)

    @log_time('Simulation')
    @log_results('Simulation')
    @log_exceptions('Simulation')
    def simulate_to_stationarity(self,
                                 process,
                                 previous_results=None,
                                 **kwargs):
        """Simulate process until stationarity is reached.

        Parameters
        ----------
        process : Process
            Process to be simulated
        previous_results : SimulationResults
            Results of previous simulation run.

        Returns
        -------
        results : SimulationResults
            Results the final cycle of the simulation.

        Raises
        ------
        TypeError
            If process is not an instance of Process.

        See also
        --------
        simulate
        run
        StationarityEvaluator
        """
        if not isinstance(process, Process):
            raise TypeError('Expected Process')

        if previous_results is not None:
            self.set_state_from_results(process, previous_results)

        # Simulate minimum number of cycles
        n_cyc = self.n_cycles_min
        process._n_cycles = n_cyc
        results = self.run(process, **kwargs)
        process._n_cycles = 1

        # Simulate until stataionarity is reached.
        while True:
            n_cyc += 1
            self.set_state_from_results(process, results)

            results_cycle = self.run(process, **kwargs)

            if n_cyc >= self.n_cycles_max:
                self.logger.warning("Exceeded maximum number of cycles")
                break

            stationarity = False
            for chrom_old, chrom_new in zip(results.chromatograms,
                                            results_cycle.chromatograms):
                stationarity = self.stationarity_evaluator.assert_stationarity(
                    chrom_old, chrom_new)

            results.update(results_cycle)

            if stationarity:
                break

        return results

    def set_state_from_results(self, process, results):
        process.system_state = results.system_state['state']
        process.system_state_derivative = results.system_state[
            'state_derivative']
        return process

    @abstractmethod
    def run(process, **kwargs):
        """Abstract Method for running a simulation.

        Parameters
        ----------
        process : Process
            Process to be simulated.

        Returns
        -------
        results : SimulationResults
            Simulation results including process and solver configuration.

        Raises
        ------
        TypeError
            If process is not an instance of Process
        CADETProcessError
            If simulation doesn't terminate successfully
        """
        return

    @property
    def stationarity_evaluator(self):
        """Returns the stationarity evaluator.

        Returns
        ----------
        stationarity_evaluator : StationarityEvaluator
            Evaluator for cyclic stationarity.
        """
        return self._stationarity_evaluator

    @stationarity_evaluator.setter
    def stationarity_evaluator(self, stationarity_evaluator):
        if not isinstance(stationarity_evaluator, StationarityEvaluator):
            raise CADETProcessError('Expected StationarityEvaluator')
        self._stationarity_evaluator = stationarity_evaluator
Пример #23
0
class SimulationResults(metaclass=StructMeta):
    """Class for storing simulation results including the solver configuration

    Attributes
    ----------
    solver_name : str
        Name of the solver used to simulate the process
    solver_parameters : dict
        Dictionary with parameters used by the solver
    exit_flag : int
        Information about the solver termination.
    exit_message : str
        Additional information about the solver status
    time_elapsed : float
        Execution time of simulation.
    process_name : str
        Name of the simulated proces
    process_config : dict
        Configuration of the simulated process
    process_meta : dict
        Meta information of the process.
    solution : dict
        Time signals for all cycles of all Unit Operations.
    system_state : dict
        Final state and state_derivative of the system.
    chromatograms : List of chromatogram
        Solution of the final cycle of the chromatogram_sinks.
    n_cycles : int
        Number of cycles that were simulated.

    Notes
    -----
    Ideally, the final state for each unit operation should be saved. However,
    CADET does currently provide this functionality.
    """
    solver_name = String()
    solver_parameters = Dict()
    exit_flag = UnsignedInteger()
    exit_message = String()
    time_elapsed = UnsignedFloat()
    process_name = String()
    process_config = Dict()
    solution_cycles = Dict()
    system_state = Dict()
    chromatograms = List()

    def __init__(self, solver_name, solver_parameters, exit_flag, exit_message,
                 time_elapsed, process_name, process_config, process_meta,
                 solution_cycles, system_state, chromatograms):
        self.solver_name = solver_name
        self.solver_parameters = solver_parameters

        self.exit_flag = exit_flag
        self.exit_message = exit_message
        self.time_elapsed = time_elapsed

        self.process_name = process_name
        self.process_config = process_config
        self.process_meta = process_meta

        self.solution_cycles = solution_cycles
        self.system_state = system_state
        self.chromatograms = chromatograms

    def update(self, new_results):
        if self.process_name != new_results.process_name:
            raise CADETProcessError('Process does not match')

        self.exit_flag = new_results.exit_flag
        self.exit_message = new_results.exit_message
        self.time_elapsed += new_results.time_elapsed

        self.system_state = new_results.system_state

        self.chromatograms = new_results.chromatograms
        for unit, solutions in self.solution_cycles.items():
            for sol in solutions:
                self.solution_cycles[unit][sol].append(
                    new_results.solution[unit][sol])

    @property
    def solution(self):
        """Construct complete solution from individual cyles.
        """
        cycle_time = self.process_config['parameters']['cycle_time']

        time_complete = self.time_cycle
        for i in range(1, self.n_cycles):
            time_complete = np.hstack(
                (time_complete, self.time_cycle[1:] + i * cycle_time))

        solution = addict.Dict()
        for unit, solutions in self.solution_cycles.items():
            for sol, cycles in solutions.items():
                solution[unit][sol] = copy.deepcopy(cycles[0])
                solution_complete = cycles[0].solution
                for i in range(1, self.n_cycles):
                    solution_complete = np.vstack(
                        (solution_complete, cycles[i].solution[1:]))
                solution[unit][sol].time = time_complete
                solution[unit][sol].solution = solution_complete

        return solution

    @property
    def n_cycles(self):
        return len(
            self.solution_cycles[self._first_unit][self._first_solution])

    @property
    def _first_unit(self):
        return next(iter(self.solution_cycles))

    @property
    def _first_solution(self):
        return next(iter(self.solution_cycles[self._first_unit]))

    @property
    def time_cycle(self):
        """np.array: Solution times vector
        """
        return \
            self.solution_cycles[self._first_unit][self._first_solution][0].time

    def save(self, case_dir, unit=None, start=0, end=None):
        path = os.path.join(settings.project_directory, case_dir)

        if unit is None:
            units = self.solution.keys()
        else:
            units = self.solution[unit]

        for unit in units:
            self.solution[unit][-1].plot(save_path=path + '/' + unit +
                                         '_last.png',
                                         start=start,
                                         end=end)

        for unit in units:
            self.solution_complete[unit].plot(save_path=path + '/' + unit +
                                              '_complete.png',
                                              start=start,
                                              end=end)

        for unit in units:
            self.solution[unit][-1].plot(
                save_path=path + '/' + unit + '_overlay.png',
                overlay=[cyc.signal for cyc in self.solution[unit][0:-1]],
                start=start,
                end=end)
class FractionPool(metaclass=StructMeta):
    """
    """
    n_comp = UnsignedInteger()

    def __init__(self, n_comp):
        self._fractions = []
        self.n_comp = n_comp

    def add_fraction(self, fraction):
        if not isinstance(fraction, Fraction):
            raise CADETProcessError('Expected Fraction')

        if fraction.n_comp != self.n_comp:
            raise CADETProcessError('Number of components does not match.')

        self._fractions.append(fraction)

    @property
    def fractions(self):
        if len(self._fractions) == 0:
            return [Fraction(np.zeros((self.n_comp, )), 0)]
        return self._fractions

    @property
    def volume(self):
        """Returns the sum of all fraction volumes in the fraction pool

        Returns
        -------
        volume : float
            Cumulative volume of all fractions in the pool.
        """
        return sum(frac.volume for frac in self.fractions)

    @property
    def mass(self):
        """Returns the cumulative sum of the fraction masses of the pool.

        Returns
        -------
        mass : float
            Cumulative mass of all fractions in the pool.
        """
        return sum(frac.mass for frac in self.fractions)

    @property
    def pool_mass(self):
        """Returns the sum of all component masses of all fractions of the pool.

        Returns
        -------
        pool_mass : float
            Cumulative mass of all fractions in the pool.
        """
        return sum(frac.fraction_mass for frac in self.fractions)

    @property
    def purity(self):
        """Returns the average purity of the fraction pool.

        Invalid values are replaced by zero.

        Returns
        -------
        purity : ndarray
            Average purity of the fraction.

        See also
        --------
        mass
        pool_mass
        concentration
        """
        with np.errstate(divide='ignore', invalid='ignore'):
            purity = self.mass / self.pool_mass

        return np.nan_to_num(purity)

    @property
    def concentration(self):
        """Returns the average concentration of the fraction pool.

        Invalid values are replaced by zero.

        Returns
        -------
        concentration : ndarray
            Average concentration of the fraction pool.

        See also
        --------
        mass
        volume
        """
        with np.errstate(divide='ignore', invalid='ignore'):
            concentration = self.mass / self.volume

        return np.nan_to_num(concentration)

    def __repr__(self):
        return "%s(n_comp=%r)" % (self.__class__.__name__, self.n_comp)