plt.vlines(x=min(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=max(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) Plot_CCLM(dir_mistral='NETCDFS_CCLM/03/member_relax_3_big_00/post/', name=name_2, bcolor='black', var=Vari, flag='FALSE', color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='TRUE', NN=NN) xs, ys, zs = rp.transform_points( pc, np.array([-17, 105.0]), # Adjust for other domains! np.array([3, 60])).T # Adjust for other domains! ax.set_xlim(xs) ax.set_ylim(ys) plt.savefig(DIR_exp + 'NAMES' + "/" + pdf_name) plt.close() # RMSE time-series
fontsize=15) plt.hlines(y=min(rlat_f), xmin=min(rlon_f), xmax=max(rlon_f), color='red',linestyles= 'dashed', linewidth=2) plt.hlines(y=max(rlat_f), xmin=min(rlon_f), xmax=max(rlon_f), color='red',linestyles= 'dashed', linewidth=2) plt.vlines(x=min(rlon_f), ymin=min(rlat_f), ymax=max(rlat_f), color='red',linestyles= 'dashed', linewidth=2) plt.vlines(x=max(rlon_f), ymin=min(rlat_f), ymax=max(rlat_f), color='red',linestyles= 'dashed', linewidth=2) plt.hlines(y=min(rlat_o), xmin=min(rlon_o), xmax=max(rlon_o), color='black',linestyles= 'dashed', linewidth=2) plt.hlines(y=max(rlat_o), xmin=min(rlon_o), xmax=max(rlon_o), color='black',linestyles= 'dashed', linewidth=2) plt.vlines(x=min(rlon_o), ymin=min(rlat_o), ymax=max(rlat_o), color='black',linestyles= 'dashed', linewidth=2) plt.vlines(x=max(rlon_o), ymin=min(rlat_o), ymax=max(rlat_o), color='black',linestyles= 'dashed', linewidth=2) plt.hlines(y=min(rlat_o[buffer:-buffer]), xmin=min(rlon_o[buffer:-buffer]), xmax=max(rlon_o[buffer:-buffer]), color='black', linewidth=4) plt.hlines(y=max(rlat_o[buffer:-buffer]), xmin=min(rlon_o[buffer:-buffer]), xmax=max(rlon_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=min(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=max(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) Plot_CCLM(dir_mistral='/work/bb0962/work4/member_relax_3_big/post/',name=name_2,bcolor='black',var='T_2M',flag='FALSE',color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='TRUE', NN=NN) #plt.title("Shift "+ str(4)+pdf_name) xs, ys, zs = rp.transform_points(pc, np.array([-17, 105.0]), np.array([3, 60])).T # rp = ccrs.RotatedPole(pole_longitude=-162.0, # pole_latitude=39.25, # globe=ccrs.Globe(semimajor_axis=6370000, # semiminor_axis=6370000)) ax.set_xlim(xs) ax.set_ylim(ys) # Plot_CCLM(bcolor='black', grids='FALSE', flag='FALSE') plt.savefig(pdf_name) plt.close()
def plot_rmse_spread(PDF="name.pdf", vari="RMSE", VAL=np.zeros((10, 10, 10)), x=10, y=10, col=['k', 'r', 'b', 'g', 'm']): #Plot_CCLM(dir_mistral='/work/bb1029/b324045/work5/03/member_relax_3_big_00/post/', name=name_2, bcolor='black', # var=Vari, flag='FALSE', color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='FALSE', # NN=NN) Plot_CCLM(dir_mistral='NETCDFS_CCLM/eobs/', name=name_2, bcolor='black', var=Vari, flag='FALSE', color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='FALSE', NN=NN) if vari == "RMSE": # v = np.linspace(0, .8, 9, endpoint=True) v = np.linspace(0, 3.2, 9, endpoint=True) else: # v = np.linspace(0, .8, 9, endpoint=True) v = np.linspace(0, .8, 9, endpoint=True) if vari == "RMSE": cs = plt.contourf(lons_f1, lats_f1, VAL, v, transform=ccrs.PlateCarree(), cmap=plt.cm.terrain) # cs = plt.pcolor(lons_f1,lats_f1,VAL, cmap=plt.cm.terrain) cb = plt.colorbar(cs) cb.set_label('RMSE [K]', fontsize=20) cb.ax.tick_params(labelsize=20) else: if vari == "SPREAD": # cs = plt.pcolor(lons_f1, lats_f1, VAL,cmap=plt.cm.terrain) cs = plt.contourf(lons_f1, lats_f1, VAL, v, transform=ccrs.PlateCarree(), cmap=plt.cm.terrain) cb = plt.colorbar(cs) cb.set_label('SPREAD [K]', fontsize=20) cb.ax.tick_params(labelsize=20) plt.hlines(y=min(rlat_o[buffer:-buffer]), xmin=min(rlon_o[buffer:-buffer]), xmax=max(rlon_o[buffer:-buffer]), color='black', linewidth=4) plt.hlines(y=max(rlat_o[buffer:-buffer]), xmin=min(rlon_o[buffer:-buffer]), xmax=max(rlon_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=min(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=max(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) # added 22.08.2017 plt.ylim([min(rlat_o[buffer:-buffer]), max(rlat_o[buffer:-buffer])]) plt.xlim([min(rlon_o[buffer:-buffer]), max(rlon_o[buffer:-buffer])]) plt.savefig(PDF) plt.close()
plt.vlines(x=min(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=max(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) Plot_CCLM(dir_mistral='/work/bb0962/work3/member_relax_3_big/post/', name='member_relax_3_T_2M_ts_monmean_1995.nc', bcolor='black', var='T_2M', flag='FALSE', color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='TRUE', NN=NN) plt.title("Shift " + str(4) + pdf_name) xs, ys, zs = rp.transform_points(pc, np.array([-17, 105.0]), np.array([3, 60])).T # rp = ccrs.RotatedPole(pole_longitude=-162.0, # pole_latitude=39.25, # globe=ccrs.Globe(semimajor_axis=6370000, # semiminor_axis=6370000)) ax.set_xlim(xs) ax.set_ylim(ys)
ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) plt.vlines(x=max(rlon_o[buffer:-buffer]), ymin=min(rlat_o[buffer:-buffer]), ymax=max(rlat_o[buffer:-buffer]), color='black', linewidth=4) Plot_CCLM(dir_mistral='/NETCDFS_CCLM/eobs/', name=name_2, bcolor='black', var=Vari, flag='FALSE', color_map='TRUE', alph=1, grids='FALSE', grids_color='red', rand_obs='TRUE', NN=NN) xs, ys, zs = rp.transform_points( pc, np.array([-17, 105.0]), # Adjust for other domains! np.array([3, 60])).T # Adjust for other domains! ax.set_xlim(xs) ax.set_ylim(ys) plt.ylim([min(rlat_o[buffer:-buffer]), max(rlat_o[buffer:-buffer])]) plt.xlim([min(rlon_o[buffer:-buffer]), max(rlon_o[buffer:-buffer])])