def process(file): runlist_path = file.runlist_path output_path = file.charge_averages_path df_runs = open_runlist_dl1(runlist_path) df_runs['transmission'] = 1 / df_runs['fw_atten'] n_runs = df_runs.index.size mapping = df_runs.iloc[0]['reader'].mapping n_pixels = df_runs.iloc[0]['reader'].n_pixels cs = ChargeStatistics() desc0 = "Looping over files" it = enumerate(df_runs.iterrows()) for i, (_, row) in tqdm(it, total=n_runs, desc=desc0): reader = row['reader'] transmission = row['transmission'] n_rows = n_pixels * 1000 pixel, charge = reader.select_columns(['pixel', 'charge'], stop=n_rows) cs.add(pixel, transmission, charge) reader.store.close() df_pixel, df_camera = cs.finish() df = df_pixel[["pixel", "amplitude", "mean", "std"]].copy() df = df.rename(columns={"amplitude": "transmission"}) df_runs2 = df_runs[['transmission', 'pe_expected', 'fw_pos']].copy() df_runs2['run_number'] = df_runs2.index df = pd.merge(df, df_runs2, on='transmission') with HDF5Writer(output_path) as writer: writer.write(data=df) writer.write_mapping(mapping) writer.write_metadata(n_pixels=n_pixels)
def process(file): runlist_path = file.runlist_path fw_path = file.fw_path ff_path = file.ff_path output_path = file.charge_resolution_path df_runs = open_runlist_dl1(runlist_path) df_runs['transmission'] = 1 / df_runs['fw_atten'] n_runs = df_runs.index.size mapping = df_runs.iloc[0]['reader'].mapping n_pixels = df_runs.iloc[0]['reader'].n_pixels with HDF5Reader(fw_path) as reader: df = reader.read("data") fw_m = df['fw_m'].values fw_merr = df['fw_merr'].values with HDF5Reader(ff_path) as reader: df = reader.read("data") ff_m = df['ff_m'].values ff_c = df['ff_c'].values cr = ChargeResolution() cs = ChargeStatistics() desc0 = "Looping over files" it = enumerate(df_runs.iterrows()) for i, (_, row) in tqdm(it, total=n_runs, desc=desc0): reader = row['reader'] transmission = row['transmission'] n_rows = n_pixels * 1000 pixel, charge = reader.select_columns(['pixel', 'charge'], stop=n_rows) true = transmission * fw_m[pixel] measured = (charge - ff_c[pixel]) / ff_m[pixel] cr.add(pixel, true, measured) cs.add(pixel, true, measured) reader.store.close() df_cr_pixel, df_cr_camera = cr.finish() df_cs_pixel, df_cs_camera = cs.finish() def add_error(df): df['true_err'] = df['true'] / fw_m[df['pixel']] * fw_merr[df['pixel']] add_error(df_cr_pixel) with HDF5Writer(output_path) as writer: writer.write( charge_resolution_pixel=df_cr_pixel, charge_resolution_camera=df_cr_camera, charge_statistics_pixel=df_cs_pixel, charge_statistics_camera=df_cs_camera, ) writer.write_mapping(mapping) writer.write_metadata(n_pixels=n_pixels)
def main(): description = 'Create a new HDFStore file containing the time corrections' parser = argparse.ArgumentParser(description=description, formatter_class=Formatter) parser.add_argument('-f', '--file', dest='input_path', action='store', required=True, help='path to the runlist txt file') parser.add_argument('-o', '--output', dest='output_path', action='store', required=True, help='path to store the output HDFStore file') args = parser.parse_args() input_path = args.input_path output_path = args.output_path df_runs = open_runlist_dl1(input_path) if os.path.exists(output_path): os.remove(output_path) print("Created HDFStore file: {}".format(output_path)) with pd.HDFStore(output_path) as store: store['mapping'] = df_runs.iloc[0]['reader'].store['mapping'] store.get_storer('mapping').attrs.metadata = df_runs.iloc[0]['reader'].store.get_storer('mapping').attrs.metadata mean_list = [] desc = "Looping over files" n_rows = df_runs.index.size for index, row in tqdm(df_runs.iterrows(), total=n_rows, desc=desc): reader = row['reader'] amplitude = row['illumination'] attenuation = row['attenuation'] df = reader.load_entire_table() df_mean = df.groupby('pixel').mean().reset_index() df_mean['attenuation'] = attenuation df_mean['amplitude'] = amplitude mean_list.append(df_mean) reader.store.close() store['mean'] = pd.concat(mean_list, ignore_index=True) print("Filled file: {}".format(output_path))
def process(file): runlist_path = file.runlist_path fw_path = file.fw_path ff_path = file.ff_path output_path = file.stats_path df_runs = open_runlist_dl1(runlist_path) df_runs['transmission'] = 1 / df_runs['fw_atten'] n_runs = df_runs.index.size mapping = df_runs.iloc[0]['reader'].mapping n_pixels = df_runs.iloc[0]['reader'].n_pixels with HDF5Reader(fw_path) as reader: df = reader.read("data") fw_m = df['fw_m'].values fw_merr = df['fw_merr'].values with HDF5Reader(ff_path) as reader: df = reader.read("data") ff_m = df['ff_m'].values ff_c = df['ff_c'].values df_list = [] desc0 = "Looping over files" it = enumerate(df_runs.iterrows()) for i, (run, row) in tqdm(it, total=n_runs, desc=desc0): reader = row['reader'] transmission = row['transmission'] fw_pos = row['fw_pos'] n_rows = n_pixels * 1000 pixel, charge = reader.select_columns(['pixel', 'charge'], stop=n_rows) true = transmission * fw_m[pixel] df = pd.DataFrame( dict( pixel=pixel, charge=charge, measured=(charge - ff_c[pixel]) / ff_m[pixel], run=run, transmission=transmission, fw_pos=fw_pos, true=true, )) trans = df.groupby('pixel').transform('mean') df['charge_mean'] = trans['charge'] df['measured_mean'] = trans['measured'] gb = df.groupby('pixel') df_stats = gb.agg({ 'charge': ['mean', 'std'], 'measured': ['mean', 'std'] }) df_stats['run'] = run df_stats['transmission'] = transmission df_stats['fw_pos'] = fw_pos df_stats['true'] = transmission * fw_m df_stats['pixel'] = df_stats.index df_stats.loc[:, ('measured', 'res')] = gb.apply(charge_resolution_df).values df_stats.loc[:, ('charge', 'rms')] = gb.apply(rms_charge_df).values df_stats.loc[:, ('measured', 'rms')] = gb.apply(rms_measured_df).values df_list.append(df_stats) reader.store.close() df = pd.concat(df_list, ignore_index=True) with HDF5Writer(output_path) as writer: writer.write(data=df) writer.write_mapping(mapping) writer.write_metadata(n_pixels=n_pixels)
def process(file): runlist_path = file.spe_runlist_path spe_path = file.spe_path profile_path = file.illumination_profile_path dead = file.dead fw_path = file.fw_path plot_dir = file.fw_plot_dir pde = file.pde df_runs = open_runlist_dl1(runlist_path, False) df_runs['transmission'] = 1/df_runs['fw_atten'] store_spe = pd.HDFStore(spe_path) df_spe = store_spe['coeff_pixel'] df_spe_err = store_spe['errors_pixel'] mapping = store_spe['mapping'] with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) mapping.metadata = store_spe.get_storer('mapping').attrs.metadata meta_spe = store_spe.get_storer('metadata').attrs.metadata n_spe_illuminations = meta_spe['n_illuminations'] spe_files = meta_spe['files'] n_pixels = meta_spe['n_pixels'] mean_opct = df_spe['opct'].mean() if pde is None: pe2photons = PE2Photons().convert(mean_opct) else: pe2photons = 1/pde print("PDE = {:.3f}".format(1/pe2photons)) print("OPCT = {:.3f}".format(mean_opct)) spe_transmission = [] pattern = '(.+?)/Run(.+?)_dl1.h5' for path in spe_files: try: reg_exp = re.search(pattern, path) if reg_exp: run = int(reg_exp.group(2)) spe_transmission.append(df_runs.loc[run]['transmission']) except AttributeError: print("Problem with Regular Expression, " "{} does not match patten {}".format(path, pattern)) pix_lambda = np.zeros((n_spe_illuminations, n_pixels)) pix_lambda_err = np.zeros((n_spe_illuminations, n_pixels)) for ill in range(n_spe_illuminations): key = "lambda_" + str(ill) lambda_ = df_spe[['pixel', key]].sort_values('pixel')[key].values * pe2photons lambda_err = df_spe_err[['pixel', key]].sort_values('pixel')[key].values pix_lambda[ill] = lambda_ pix_lambda_err[ill] = lambda_err if profile_path: with HDF5Reader(profile_path) as reader: correction = reader.read("correction")['correction'] else: correction = np.ones(n_pixels) df_list = [] for i in range(n_spe_illuminations): df_list.append(pd.DataFrame(dict( pixel=np.arange(n_pixels), correction=correction, transmission=spe_transmission[i], lambda_=pix_lambda[i], lambda_err=pix_lambda_err[i], ))) df = pd.concat(df_list) # Obtain calibration dead_mask = np.zeros(n_pixels, dtype=np.bool) dead_mask[dead] = True transmission = np.unique(df['transmission'].values) lambda_ = [] lambda_err = [] corrections = [] for i in range(len(transmission)): df_t = df.loc[df['transmission'] == transmission[i]] lambda_.append(df_t['lambda_'].values) lambda_err.append(df_t['lambda_err'].values) corrections.append(df_t['correction'].values) correction = corrections[0] lambda_ = np.array(lambda_) lambda_err = np.array(lambda_err) c_list = [] m_list = [] merr_list = [] for pix in range(n_pixels): x = transmission y = lambda_[:, pix] yerr = lambda_err[:, pix] w = 1/yerr cp, mp = polyfit(x, y, 1, w=w) c_list.append(cp) m_list.append(mp) w2 = w**2 merrp = np.sqrt(np.sum(w2)/(np.sum(w2)*np.sum(w2*x**2) - (np.sum(w2*x))**2)) merr_list.append(merrp) c = np.array(c_list) m = np.array(m_list) merr = np.array(merr_list) # Exlude low gradients (dead pixels) # dead_mask[m < 1000] = True merr_corrected = merr / correction merr_corrected_d = merr_corrected[~dead_mask] m_corrected = m / correction m_corrected_d = m_corrected[~dead_mask] w = 1/merr_corrected_d m_avg = np.average(m_corrected_d, weights=w) m_pix = m_avg * correction m_avg_std = np.sqrt(np.average((m_corrected_d - m_avg) ** 2, weights=w)) m_pix_std = m_avg_std * correction print("{:.3f} ± {:.3f}".format(m_avg, m_avg_std)) df_calib = pd.DataFrame(dict( pixel=np.arange(n_pixels), fw_m=m_pix, fw_merr=m_pix_std, )) df_calib = df_calib.sort_values('pixel') with HDF5Writer(fw_path) as writer: writer.write(data=df_calib) writer.write_mapping(mapping) writer.write_metadata( n_pixels=n_pixels, fw_m_camera=m_avg, fw_merr_camera=m_avg_std, ) p_fit = FitPlotter() l = np.s_[:5] p_fit.plot(transmission, lambda_[:, l], lambda_err[:, l], c[l], m[l]) p_fit.save(os.path.join(plot_dir, "fw_calibration_fit.pdf")) p_line = LinePlotter() p_line.plot(m_avg, m_pix, m_avg_std) p_line.save(os.path.join(plot_dir, "fw_calibration.pdf")) p_hist = HistPlotter() p_hist.plot(m_corrected[~dead_mask]) p_hist.save(os.path.join(plot_dir, "relative_pde.pdf"))
def process(file): runlist_path = file.runlist_path output_path = file.saturation_recovery_path fw_path = file.fw_path plot_path = file.saturation_recovery_plot_path poi = file.poi df_runs = open_runlist_dl1(runlist_path) df_runs['transmission'] = 1 / df_runs['fw_atten'] n_runs = df_runs.index.size mapping = df_runs.iloc[0]['reader'].mapping n_pixels = df_runs.iloc[0]['reader'].n_pixels cs = ChargeStatistics() desc0 = "Looping over files" it = enumerate(df_runs.iterrows()) for i, (_, row) in tqdm(it, total=n_runs, desc=desc0): reader = row['reader'] transmission = row['transmission'] n_rows = n_pixels * 1000 pixel, charge = reader.select_columns(['pixel', 'saturation_coeff'], stop=n_rows) cs.add(pixel, transmission, charge) reader.store.close() df_pixel, df_camera = cs.finish() df = df_pixel[["pixel", "amplitude", "mean", "std"]].copy() df = df.rename(columns={"amplitude": "transmission"}) df_runs2 = df_runs[['transmission', 'pe_expected', 'fw_pos']].copy() df_runs2['run_number'] = df_runs2.index df = pd.merge(df, df_runs2, on='transmission') with HDF5Reader(fw_path) as reader: df_fw = reader.read("data") fw_m = df_fw['fw_m'].values fw_merr = df_fw['fw_merr'].values pixel = df['pixel'].values transmission = df['transmission'].values df['illumination'] = transmission * fw_m[pixel] df['illumination_err'] = transmission * fw_merr[pixel] d_list = [] for pix in np.unique(df['pixel']): df_p = df.loc[df['pixel'] == pix] true = df_p['illumination'].values true_err = df_p['illumination_err'].values measured = df_p['mean'].values measured_std = df_p['std'].values flag = np.zeros(true.size, dtype=np.bool) flag[np.abs(true - 2500).argsort()[:5]] = True x = true[flag] y = measured[flag] y_err = measured_std[flag] p = polyfit(x, y, [1], w=1 / y_err) ff_c, ff_m = p d_list.append(dict( pixel=pix, ff_c=ff_c, ff_m=ff_m, )) if pix == poi: print("{:.3f}".format(ff_m)) p_fit = FitPlotter() p_fit.plot(true, measured, true_err, measured_std, flag, p) p_fit.save(plot_path) df_calib = pd.DataFrame(d_list) df_calib = df_calib.sort_values('pixel') with HDF5Writer(output_path) as writer: writer.write(data=df_calib) writer.write_mapping(mapping) writer.write_metadata(n_pixels=n_pixels)
def main(): description = 'Extract the charge resolution from a dynamic range dataset' parser = argparse.ArgumentParser(description=description, formatter_class=Formatter) parser.add_argument('-f', '--file', dest='input_path', action='store', required=True, help='path to the runlist.txt file for ' 'a dynamic range run') parser.add_argument('-s', '--spe', dest='spe_path', action='store', required=True, help='path to the spe file to use for ' 'the calibration of the measured ' 'and true charges') parser.add_argument('-o', '--output', dest='output_path', action='store', help='path to store the output HDF5 file ' '(OPTIONAL, will be automatically set if ' 'not specified)') args = parser.parse_args() input_path = args.input_path spe_path = args.spe_path output_path = args.output_path df_runs = open_runlist_dl1(input_path) df_runs['transmission'] = 1 / df_runs['fw_atten'] n_runs = df_runs.index.size dead = [677, 293, 27, 1925] spe_handler = SPEHandler(df_runs, spe_path) cr = ChargeResolution() cs = ChargeStatistics() if not output_path: output_dir = os.path.dirname(input_path) output_path = os.path.join(output_dir, "charge_res.h5") output_dir = os.path.dirname(output_path) if not os.path.exists(output_dir): os.makedirs(output_dir) print("Created directory: {}".format(output_dir)) if os.path.exists(output_path): os.remove(output_path) with pd.HDFStore(output_path) as store: desc0 = "Looping over files" it = enumerate(df_runs.iterrows()) for i, (_, row) in tqdm(it, total=n_runs, desc=desc0): reader = row['reader'] transmission = row['transmission'] # for df in reader.iterate_over_chunks(): df = reader.get_first_n_events(1000) df = df.loc[~df['pixel'].isin(dead)] pixel = df['pixel'].values true = spe_handler.calibrate_true(pixel, transmission) measured = df['charge'].values measured = spe_handler.calibrate_measured(pixel, measured) cr.add(pixel, true, measured) cs.add(pixel, true, measured) reader.store.close() df_pixel, df_camera = cr.finish() store['charge_resolution_pixel'] = df_pixel store['charge_resolution_camera'] = df_camera df_pixel, df_camera = cs.finish() store['charge_statistics_pixel'] = df_pixel store['charge_statistics_camera'] = df_camera