Пример #1
0
def process(file):
    runlist_path = file.runlist_path
    output_path = file.charge_averages_path

    df_runs = open_runlist_dl1(runlist_path)
    df_runs['transmission'] = 1 / df_runs['fw_atten']
    n_runs = df_runs.index.size
    mapping = df_runs.iloc[0]['reader'].mapping
    n_pixels = df_runs.iloc[0]['reader'].n_pixels

    cs = ChargeStatistics()

    desc0 = "Looping over files"
    it = enumerate(df_runs.iterrows())
    for i, (_, row) in tqdm(it, total=n_runs, desc=desc0):
        reader = row['reader']
        transmission = row['transmission']
        n_rows = n_pixels * 1000
        pixel, charge = reader.select_columns(['pixel', 'charge'], stop=n_rows)
        cs.add(pixel, transmission, charge)
        reader.store.close()
    df_pixel, df_camera = cs.finish()

    df = df_pixel[["pixel", "amplitude", "mean", "std"]].copy()
    df = df.rename(columns={"amplitude": "transmission"})
    df_runs2 = df_runs[['transmission', 'pe_expected', 'fw_pos']].copy()
    df_runs2['run_number'] = df_runs2.index
    df = pd.merge(df, df_runs2, on='transmission')

    with HDF5Writer(output_path) as writer:
        writer.write(data=df)
        writer.write_mapping(mapping)
        writer.write_metadata(n_pixels=n_pixels)
Пример #2
0
def process(file):

    runlist_path = file.runlist_path
    fw_path = file.fw_path
    ff_path = file.ff_path
    output_path = file.charge_resolution_path

    df_runs = open_runlist_dl1(runlist_path)
    df_runs['transmission'] = 1 / df_runs['fw_atten']
    n_runs = df_runs.index.size
    mapping = df_runs.iloc[0]['reader'].mapping
    n_pixels = df_runs.iloc[0]['reader'].n_pixels

    with HDF5Reader(fw_path) as reader:
        df = reader.read("data")
        fw_m = df['fw_m'].values
        fw_merr = df['fw_merr'].values

    with HDF5Reader(ff_path) as reader:
        df = reader.read("data")
        ff_m = df['ff_m'].values
        ff_c = df['ff_c'].values

    cr = ChargeResolution()
    cs = ChargeStatistics()

    desc0 = "Looping over files"
    it = enumerate(df_runs.iterrows())
    for i, (_, row) in tqdm(it, total=n_runs, desc=desc0):
        reader = row['reader']
        transmission = row['transmission']
        n_rows = n_pixels * 1000
        pixel, charge = reader.select_columns(['pixel', 'charge'], stop=n_rows)

        true = transmission * fw_m[pixel]
        measured = (charge - ff_c[pixel]) / ff_m[pixel]

        cr.add(pixel, true, measured)
        cs.add(pixel, true, measured)
        reader.store.close()
    df_cr_pixel, df_cr_camera = cr.finish()
    df_cs_pixel, df_cs_camera = cs.finish()

    def add_error(df):
        df['true_err'] = df['true'] / fw_m[df['pixel']] * fw_merr[df['pixel']]

    add_error(df_cr_pixel)

    with HDF5Writer(output_path) as writer:
        writer.write(
            charge_resolution_pixel=df_cr_pixel,
            charge_resolution_camera=df_cr_camera,
            charge_statistics_pixel=df_cs_pixel,
            charge_statistics_camera=df_cs_camera,
        )
        writer.write_mapping(mapping)
        writer.write_metadata(n_pixels=n_pixels)
Пример #3
0
def process(file):

    dl1_paths = file.dl1_paths
    pde = file.pde
    mc_calib_path = file.mc_calib_path
    output_path = file.intensity_resolution_path

    n_runs = len(dl1_paths)
    reader_list = [DL1Reader(p) for p in dl1_paths]
    mapping = reader_list[0].mapping
    n_pixels = reader_list[0].n_pixels
    n_rows = n_pixels * 1000

    with HDF5Reader(mc_calib_path) as reader:
        df = reader.read("data")
        mc_m = df['mc_m'].values

    cr = ChargeResolution(mc_true=True)
    cs = ChargeStatistics()

    desc0 = "Looping over files"
    for reader in tqdm(reader_list, total=n_runs, desc=desc0):
        pixel, charge, true = reader.select_columns(
            ['pixel', 'charge', 'mc_true'], stop=n_rows)
        true_photons = true / pde
        measured = charge / mc_m[pixel]

        f = true > 0
        true_photons = true_photons[f]
        measured = measured[f]

        cr.add(pixel, true_photons, measured)
        cs.add(pixel, true_photons, measured)
        reader.store.close()
    df_cr_pixel, df_cr_camera = cr.finish()
    df_cs_pixel, df_cs_camera = cs.finish()

    with HDF5Writer(output_path) as writer:
        writer.write(
            charge_resolution_pixel=df_cr_pixel,
            charge_resolution_camera=df_cr_camera,
            charge_statistics_pixel=df_cs_pixel,
            charge_statistics_camera=df_cs_camera,
        )
        writer.write_mapping(mapping)
        writer.write_metadata(n_pixels=n_pixels)
Пример #4
0
#     pe_sigma = np.sqrt(K * spe_sigma ** 2 + eped_sigma ** 2)
#
#     signal = pct[K] * gaus.pdf(x, eped + K * spe, pe_sigma)
#     signal *= norm
#     pe_signal = np.nansum(signal, 0)
#
#     s = ped_signal + pe_signal
#     s /= s.sum()
#
#     return s

opct = 0.38
lambda_ = 1

cr = ChargeResolution()
cs = ChargeStatistics()
desc = "Looping over lambdas"
true_arr = np.geomspace(0.1, 400, 100)
for lambda_ in tqdm(true_arr, desc=desc):
    pixel = 1920
    dist = get_distribution(opct, lambda_)
    n = 100000
    measured = np.random.choice(x, p=dist, size=n)
    true = lambda_
    cr.add(pixel, true, measured)
    cs.add(pixel, true, measured)
df_pixel, _ = cr.finish()
x = df_pixel['true']
cr = df_pixel['rmse']
df_pixel, _ = cs.finish()
mean = df_pixel['mean']
Пример #5
0
def process(file):
    runlist_path = file.runlist_path
    output_path = file.saturation_recovery_path
    fw_path = file.fw_path
    plot_path = file.saturation_recovery_plot_path
    poi = file.poi

    df_runs = open_runlist_dl1(runlist_path)
    df_runs['transmission'] = 1 / df_runs['fw_atten']
    n_runs = df_runs.index.size
    mapping = df_runs.iloc[0]['reader'].mapping
    n_pixels = df_runs.iloc[0]['reader'].n_pixels

    cs = ChargeStatistics()

    desc0 = "Looping over files"
    it = enumerate(df_runs.iterrows())
    for i, (_, row) in tqdm(it, total=n_runs, desc=desc0):
        reader = row['reader']
        transmission = row['transmission']
        n_rows = n_pixels * 1000
        pixel, charge = reader.select_columns(['pixel', 'saturation_coeff'],
                                              stop=n_rows)
        cs.add(pixel, transmission, charge)
        reader.store.close()
    df_pixel, df_camera = cs.finish()

    df = df_pixel[["pixel", "amplitude", "mean", "std"]].copy()
    df = df.rename(columns={"amplitude": "transmission"})
    df_runs2 = df_runs[['transmission', 'pe_expected', 'fw_pos']].copy()
    df_runs2['run_number'] = df_runs2.index
    df = pd.merge(df, df_runs2, on='transmission')

    with HDF5Reader(fw_path) as reader:
        df_fw = reader.read("data")
        fw_m = df_fw['fw_m'].values
        fw_merr = df_fw['fw_merr'].values

    pixel = df['pixel'].values
    transmission = df['transmission'].values
    df['illumination'] = transmission * fw_m[pixel]
    df['illumination_err'] = transmission * fw_merr[pixel]

    d_list = []
    for pix in np.unique(df['pixel']):

        df_p = df.loc[df['pixel'] == pix]
        true = df_p['illumination'].values
        true_err = df_p['illumination_err'].values
        measured = df_p['mean'].values
        measured_std = df_p['std'].values

        flag = np.zeros(true.size, dtype=np.bool)
        flag[np.abs(true - 2500).argsort()[:5]] = True

        x = true[flag]
        y = measured[flag]
        y_err = measured_std[flag]

        p = polyfit(x, y, [1], w=1 / y_err)
        ff_c, ff_m = p

        d_list.append(dict(
            pixel=pix,
            ff_c=ff_c,
            ff_m=ff_m,
        ))

        if pix == poi:
            print("{:.3f}".format(ff_m))
            p_fit = FitPlotter()
            p_fit.plot(true, measured, true_err, measured_std, flag, p)
            p_fit.save(plot_path)

    df_calib = pd.DataFrame(d_list)
    df_calib = df_calib.sort_values('pixel')
    with HDF5Writer(output_path) as writer:
        writer.write(data=df_calib)
        writer.write_mapping(mapping)
        writer.write_metadata(n_pixels=n_pixels)
def main():
    description = 'Extract the charge resolution from a dynamic range dataset'
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=Formatter)
    parser.add_argument('-f',
                        '--file',
                        dest='input_path',
                        action='store',
                        required=True,
                        help='path to the runlist.txt file for '
                        'a dynamic range run')
    parser.add_argument('-s',
                        '--spe',
                        dest='spe_path',
                        action='store',
                        required=True,
                        help='path to the spe file to use for '
                        'the calibration of the measured '
                        'and true charges')
    parser.add_argument('-o',
                        '--output',
                        dest='output_path',
                        action='store',
                        help='path to store the output HDF5 file '
                        '(OPTIONAL, will be automatically set if '
                        'not specified)')
    args = parser.parse_args()

    input_path = args.input_path
    spe_path = args.spe_path
    output_path = args.output_path

    df_runs = open_runlist_dl1(input_path)
    df_runs['transmission'] = 1 / df_runs['fw_atten']
    n_runs = df_runs.index.size

    dead = [677, 293, 27, 1925]

    spe_handler = SPEHandler(df_runs, spe_path)
    cr = ChargeResolution()
    cs = ChargeStatistics()

    if not output_path:
        output_dir = os.path.dirname(input_path)
        output_path = os.path.join(output_dir, "charge_res.h5")
    output_dir = os.path.dirname(output_path)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        print("Created directory: {}".format(output_dir))
    if os.path.exists(output_path):
        os.remove(output_path)

    with pd.HDFStore(output_path) as store:
        desc0 = "Looping over files"
        it = enumerate(df_runs.iterrows())
        for i, (_, row) in tqdm(it, total=n_runs, desc=desc0):
            reader = row['reader']
            transmission = row['transmission']
            # for df in reader.iterate_over_chunks():
            df = reader.get_first_n_events(1000)
            df = df.loc[~df['pixel'].isin(dead)]
            pixel = df['pixel'].values
            true = spe_handler.calibrate_true(pixel, transmission)
            measured = df['charge'].values
            measured = spe_handler.calibrate_measured(pixel, measured)
            cr.add(pixel, true, measured)
            cs.add(pixel, true, measured)
            reader.store.close()
        df_pixel, df_camera = cr.finish()
        store['charge_resolution_pixel'] = df_pixel
        store['charge_resolution_camera'] = df_camera
        df_pixel, df_camera = cs.finish()
        store['charge_statistics_pixel'] = df_pixel
        store['charge_statistics_camera'] = df_camera