Пример #1
0
    def add_user_network_random(self,
                                df_interactions,
                                skip_hospitalised=True,
                                skip_quarantine=True,
                                name="user_network"):
        """[summary]
        adds a bespoke user random network from a dataframe of people and number of interactions
        the network is regenerates each day, but the number of interactions per person is statitc
        hospitalsed and quarantined people can be skipped

        Arguments:
            df_interactions {[dataframe]} -- [list of indviduals and interactions, with 2 columns ID and N]
            skip_hospitalised {[boolean]} -- [skip interaction if either person is in hospital]
            skip_quarantine{[boolean]}    -- [skip interaction if either person is in quarantined]
            name{[char]}                  -- [the name of the network]

        """

        n_indiv = len(df_interactions.index)
        n_total = self._params_obj.get_param("n_total")

        if not 'ID' in df_interactions.columns:
            raise ParameterException("df_interactions must have column ID")

        if not 'N' in df_interactions.columns:
            raise ParameterException("df must have column N")

        if not skip_hospitalised in [True, False]:
            raise ParameterException("skip_hospitalised must be True or False")

        if not skip_quarantine in [True, False]:
            raise ParameterException("skip_quarantine must be True or False")

        ID = df_interactions["ID"].to_list()
        N = df_interactions["N"].to_list()

        if (max(ID) >= n_total) or (min(ID) < 0):
            raise ParameterException(
                "all values of ID must be between 0 and n_total-1")

        if (min(N) < 1):
            raise ParameterException("all values of N must be greater than 0")

        ID_c = covid19.longArray(n_indiv)
        N_c = covid19.intArray(n_indiv)

        for idx in range(n_indiv):
            ID_c[idx] = ID[idx]
            N_c[idx] = N[idx]

        id = covid19.add_user_network_random(self.c_model, skip_hospitalised,
                                             skip_quarantine, n_indiv, ID_c,
                                             N_c, name)
        return Network(self, id)
Пример #2
0
 def get_network_info(self, max_ids= 1000):
        
     if max_ids > 1e6 :
         raise ModelException( "Maximum number of allowed network is 1e6" )
     ids_c = covid19.intArray( max_ids )
     n_ids = covid19.get_network_ids( self.c_model, ids_c, max_ids )
     
     if n_ids == -1 :
         return self.get_network_info( max_ids = max_ids * 10 )
     
     ids        = [None] * n_ids
     names      = [None] * n_ids
     n_edges    = [None] * n_ids
     n_vertices = [None] * n_ids
     type       = [None] * n_ids
     skip_hospitalised = [None] * n_ids
     skip_quarantined  = [None] * n_ids
     daily_fraction    = [None] * n_ids
     
     for idx in range( n_ids ) :
         network = Network( self, ids_c[idx] )
         
         ids[idx]        = ids_c[idx]
         names[idx]      = network.name()
         n_edges[idx]    = network.n_edges()
         n_vertices[idx] = network.n_vertices()  
         type[idx]       = network.type()
         skip_hospitalised[idx] = network.skip_hospitalised()
         skip_quarantined[idx]  = network.skip_quarantined()
         daily_fraction[idx]    = network.daily_fraction()      
         
     return pd.DataFrame( {
             'id'                : ids,
             'name'              : names,
             'n_edges'           : n_edges,
             'n_vertices'        : n_vertices,
             'type'              : type,
             'skip_hospitalised' : skip_hospitalised,
             'skip_quarantined'  : skip_quarantined,
             'daily_fraction'    : daily_fraction
         } )
Пример #3
0
 def get_network_by_id(self, network_id ):
     return Network( self, network_id )
Пример #4
0
    def add_user_network(
            self, 
            df_network, 
            interaction_type = covid19.OCCUPATION, 
            skip_hospitalised = True, 
            skip_quarantine = True,
            construction = covid19.NETWORK_CONSTRUCTION_BESPOKE,
            daily_fraction = 1.0, 
            name = "user_network" ):
        
        """[summary]
        adds as bespoke user network from a dataframe of edges
        the network is static with the exception of skipping
        hospitalised and quarantined people

        Arguments:
            df_network {[dataframe]}      -- [list of edges, with 2 columns ID_1 and ID_2]
            interaction {[int]}           -- [type of interaction (e.g. household/occupation/random)]
            skip_hospitalised {[boolean]} -- [skip interaction if either person is in hospital]
            skip_quarantine{[boolean]}    -- [skip interaction if either person is in quarantined]
            construction{[int]}           -- [the method used for network construction]
            daily_fraction{[double]}      -- [the fraction of edges on the network present each day (i.e. down-sampling the network)]
            name{[char]}                  -- [the name of the network]

        """

        n_edges = len( df_network.index )
        n_total = self._params_obj.get_param("n_total")

        if not 'ID_1' in df_network.columns:
            raise ParameterException( "df_network must have column ID_1" )

        if not 'ID_2' in df_network.columns:
            raise ParameterException( "df_network must have column ID_2" )

        if not interaction_type in [0,1,2]:
            raise ParameterException( "interaction_type must be 0 (household), 1 (occupation) or 2 (random)" )

        if (daily_fraction > 1) or( daily_fraction < 0):
            raise ParameterException( "daily fraction must be in the range 0 to 1" )

        if not skip_hospitalised in [ True, False ]:
            raise ParameterException( "skip_hospitalised must be True or False" )

        if not skip_quarantine in [ True, False ]:
            raise ParameterException( "skip_quarantine must be True or False" )

        ID_1 = df_network[ "ID_1" ].to_list()
        ID_2 = df_network[ "ID_2" ].to_list()

        if (max( ID_1 ) >= n_total) or (min( ID_1 ) < 0):
            raise ParameterException( "all values of ID_1 must be between 0 and n_total-1" )

        if (max( ID_2 ) >= n_total) or (min( ID_2  ) < 0):
            raise ParameterException( "all values of ID_2 must be between 0 and n_total-1" )

        ID_1_c = covid19.longArray(n_edges)
        ID_2_c = covid19.longArray(n_edges)

        for idx in range(n_edges):
            ID_1_c[idx] = ID_1[idx]
            ID_2_c[idx] = ID_2[idx]

        id = covid19.add_user_network(self.c_model,interaction_type,skip_hospitalised,skip_quarantine,construction,daily_fraction, n_edges,ID_1_c, ID_2_c, name)
        return  Network( self, id )