Пример #1
0
def test_fast_on_real_data():
    from pandas import read_table
    from os import path as op

    k = 200
    subdir = "/home2/data/Projects/CWAS/share/nki/subinfo/40_Set1_N104"
    ffile = op.join(subdir, "short_compcor_rois_random_k%04i.txt" % k)
    fpaths = read_table(ffile, header=None)
    fpath = fpaths.ix[0, 0]

    import nibabel as nib
    img = nib.load(fpath)
    dat = img.get_data()

    import numpy as np
    from CPAC.cwas.subdist import norm_cols, ncor
    norm_dat = norm_cols(dat)
    corr_dat = norm_dat.T.dot(norm_dat)

    ref = eigenvector_centrality(corr_dat)
    comp = fast_eigenvector_centrality(norm_dat)

    diff = np.abs(ref - comp).mean()  # mean diff
    print(diff)

    ok_(diff < np.spacing(1e10))  # allow some differences
Пример #2
0
def test_fast_on_real_data():
    from pandas import read_table
    from os import path as op
    
    k       = 200
    subdir  = "/home2/data/Projects/CWAS/share/nki/subinfo/40_Set1_N104"
    ffile   = op.join(subdir, "short_compcor_rois_random_k%04i.txt" % k)
    fpaths  = read_table(ffile, header=None)
    fpath   = fpaths.ix[0,0]

    import nibabel as nib
    img = nib.load(fpath)
    dat = img.get_data()

    import numpy as np
    from CPAC.cwas.subdist import norm_cols, ncor
    norm_dat = norm_cols(dat)
    corr_dat = norm_dat.T.dot(norm_dat)
    
    ref    = eigenvector_centrality(corr_dat)
    comp   = fast_eigenvector_centrality(norm_dat)
    
    diff = np.abs(ref-comp).mean()  # mean diff
    print(diff)
    
    ok_(diff < np.spacing(1e10)) # allow some differences
Пример #3
0
def test_fast_eigenvector_centrality(ntpts=100, nvoxs=1000):
    print "testing fast_eigenvector_centrality"
    
    # Simulate Data
    import numpy as np
    from CPAC.cwas.subdist import norm_cols
    # Normalize Random Time-Series Data
    m = np.random.random((ntpts,nvoxs))
    m = norm_cols(m)
    # Correlation Data with Range 0-1
    mm = m.T.dot(m) # note that need to generate connectivity matrix here
    
    # Execute
    #from CPAC.network_centrality.core import fast_eigenvector_centrality,slow_eigenvector_centrality
    
    ref  = eigenvector_centrality(mm, verbose=False)  # we need to transform mm to be a distance
    comp = fast_eigenvector_centrality(m, verbose=False)
    
    diff = np.abs(ref-comp).mean()  # mean diff
    print(diff)
    
    ok_(diff < np.spacing(1e2)) # allow minimal difference
Пример #4
0
def test_fast_eigenvector_centrality(ntpts=100, nvoxs=1000):
    print "testing fast_eigenvector_centrality"

    # Simulate Data
    import numpy as np
    from CPAC.cwas.subdist import norm_cols
    # Normalize Random Time-Series Data
    m = np.random.random((ntpts, nvoxs))
    m = norm_cols(m)
    # Correlation Data with Range 0-1
    mm = m.T.dot(m)  # note that need to generate connectivity matrix here

    # Execute
    #from CPAC.network_centrality.core import fast_eigenvector_centrality,slow_eigenvector_centrality

    ref = eigenvector_centrality(
        mm, verbose=False)  # we need to transform mm to be a distance
    comp = fast_eigenvector_centrality(m, verbose=False)

    diff = np.abs(ref - comp).mean()  # mean diff
    print(diff)

    ok_(diff < np.spacing(1e2))  # allow minimal difference
Пример #5
0
def get_centrality_fast(timeseries,
                        method_options):
    '''
    Method to calculate degree and eigen vector centrality. 
    Relative to `get_centrality_opt`, it runs fast by not directly computing 
    the correlation matrix. As a consequence, there are several differences/
    limitations from the standard approach:
    
    1. Cannot specify a correlation threshold
    2. As a consequence, the weighted dense matrix centrality is computed
    3. No memory limit is specified since it is assumed to be ok
    
    Note that the approach doesn't directly calculate the complete correlation
    matrix.
    
    Parameters
    ----------
    timeseries_data : numpy array
        timeseries of the input subject
    method_options : string (list of boolean)
        list of two booleans for binarize and weighted options respectively
    
    Returns
    -------
    out_list : string (list of tuples)
        list of tuple containing output name to be used to store nifti image
        for centrality and centrality matrix. this will only be weighted since
        the fast approaches are limited to this type of output.
    
    Raises
    ------
    Exception
    '''
    
    # Import packages
    from CPAC.network_centrality import fast_degree_centrality,\
                                        fast_eigenvector_centrality
    from CPAC.cwas.subdist import norm_cols
    
    try:
        out_list    = []
        nvoxs       = timeseries.shape[0]
        ntpts       = timeseries.shape[1]
        
        # It's assumed that there is enough memory
        # So a block size isn't set here
        
        calc_degree  = method_options[0]
        calc_eigen   = method_options[1]
        
        print "Normalize Time-series"
        timeseries = norm_cols(timeseries.T)
        
        print "Computing centrality across %i voxels" % nvoxs
        
        if calc_degree:
            print "...calculating degree"
            degree_weighted = fast_degree_centrality(timeseries)
            out_list.append(('degree_centrality_weighted', degree_weighted))
        
        if calc_eigen:
            print "...calculating eigen"
            eigen_weighted = fast_eigenvector_centrality(timeseries)
            out_list.append(('eigenvector_centrality_weighted', eigen_weighted))
        
        return out_list   
    
    except Exception: 
        print "Error in calcuating centrality"
        raise