Пример #1
0
def detect(image):
    image_size = cv.GetSize(image)

    # create grayscale version
    grayscale = cv.CreateImage(image_size, 8, 1)
    cv.CvtColor(image, grayscale, cv.BGR2GRAY)

    # create storage
    storage = cv.CreateMemStorage(0)
    cv.ClearMemStorage(storage)

    # equalize histogram
    cv.EqualizeHist(grayscale, grayscale)

    # detect objects
    cascade = cv.LoadHaarClassifierCascade('haarcascade_frontalface_alt.xml',
                                           cv.Size(1, 1))
    faces = cv.HaarDetectObjects(grayscale, cascade, storage, 1.2, 2,
                                 cv.HAAR_DO_CANNY_PRUNING, cv.Size(50, 50))

    if faces:
        print 'face detected!'
        for i in faces:
            cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                         cv.Point(int(i.x + i.width), int(i.y + i.height)),
                         cv.RGB(0, 255, 0), 3, 8, 0)
Пример #2
0
    def preRender(self):
        frame = self.getFrame()
        capture = self.getCapture()
        #print _AR.GetMultiMV('data/19_20_21_22_23_24.cfg')
        #_AR.GetMultiMV('data/13_14_15_16_17_18.cfg')
        #if 'darwin' in os.uname()[0].lower():
        if 0:
            settings = [
                cv.GetCaptureProperty(capture, CVtypes.CV_CAP_PROP_FOURCC),
                cv.GetCaptureProperty(capture, CVtypes.CV_CAP_PROP_BRIGHTNESS),
                cv.GetCaptureProperty(capture, CVtypes.CV_CAP_PROP_CONTRAST),
                cv.GetCaptureProperty(capture, CVtypes.CV_CAP_PROP_SATURATION),
                cv.GetCaptureProperty(capture, CVtypes.CV_CAP_PROP_HUE),
            ]
            print settings

        size = cv.GetSize(frame)
        fsize = size.width, size.height
        size = cv.GetSize(self.image)
        isize = size.width, size.height
        if fsize == isize:
            cv.Copy(frame, self.image)
        else:
            cv.Resize(
                frame,
                self.image,
                CVtypes.CV_INTER_LINEAR,
                #CVtypes.CV_INTER_CUBIC,
            )

        cv.CvtColor(self.image, self.hsvImage, CVtypes.CV_RGB2HSV)
        cv.Split(self.hsvImage, self.hsvPlanes[0], self.hsvPlanes[1],
                 self.hsvPlanes[2], 0)
        cv.CvtColor(self.image, self.grayImage, CVtypes.CV_RGB2GRAY)
        if 1:
            #cv.EqualizeHist(self.hsvPlanes[0],self.hsvPlanes[0])
            #cv.EqualizeHist(self.hsvPlanes[2],self.hsvPlanes[2])
            #cv.Merge(self.hsvPlanes[0],self.hsvPlanes[1],
            #         self.hsvPlanes[2],0, self.hsvImage)
            #cv.CvtColor(self.hsvImage,self.image,CVtypes.CV_HSV2RGB)
            cv.EqualizeHist(self.grayImage, self.grayImage)
        cv.Split(self.image, self.rgbPlanes[0], self.rgbPlanes[1],
                 self.rgbPlanes[2], 0)
        cv.Copy(self.image, self.modifiedImage)
Пример #3
0
    def detect(self, image):
        size = cv.GetSize(image)

        # create grayscale version
        grayscale = cv.CreateImage(size, 8, 1)
        cv.CvtColor(image, grayscale, cv.BGR2GRAY)

        # create and clear storage
        storage = cv.CreateMemStorage(0)
        cv.ClearMemStorage(storage)

        # equalize histogram
        cv.EqualizeHist(grayscale, grayscale)

        # detect faces
        faces = cv.HaarDetectObjects(grayscale, self.face_cascade, storage,
                                     1.2, 2, cv.HAAR_DO_CANNY_PRUNING,
                                     self.face_size)

        if faces:
            # faces detected
            for i in faces:
                cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                             cv.Point(int(i.x + i.width), int(i.y + i.height)),
                             cv.RGB(0, 255, 0), 3, 8, 0)

            detected = True
            is_face = True
        else:
            # detect body
            bodies = cv.HaarDetectObjects(grayscale, self.body_cascade,
                                          storage, 1.1, 3, 0, self.body_size)

            if bodies:
                # body detected
                for i in bodies:
                    cv.Rectangle(
                        image, cv.Point(int(i.x), int(i.y)),
                        cv.Point(int(i.x + i.width), int(i.y + i.height)),
                        cv.RGB(0, 255, 0), 3, 8, 0)

                detected = True
                is_face = False
            else:
                detected = False
                is_face = False

        # release resources we don't need any more
        cv.ReleaseImage(grayscale)
        cv.ReleaseMemStorage(storage)

        return (detected, is_face)
Пример #4
0
 #create window and move to screen position
 cv.NamedWindow ('Camera', cv.WINDOW_AUTOSIZE)
 if len (sys.argv) == 1:
     # no argument on the command line, try to use the camera
     capture = cv.CreateCameraCapture (0)
 #
 ### check that capture device is OK
 if not capture:
     print "Error opening capture device"
     sys.exit (1)
 #
 ### capture the 1st frame to get some propertie on it
 frame = cv.QueryFrame (capture)
 #
 ### get size of the frame
 frame_size = cv.GetSize (frame)
 gray = cv.CreateImage( frame_size, 8, 1 )
 small_img = cv.CreateImage( cv.Size( int(frame_size.width/image_scale),int(frame_size.height/image_scale)), 8, 1 )
 cascade = cv.LoadHaarClassifierCascade( cascade_name, cv.Size(1,1) )
 #   
 while 1: # do forever
     # capture the current image
     frame = cv.QueryFrame (capture)
     if frame is None:
         # no image captured... end the processing
         break
     #
     ### check OS
     if (osName == "nt"):
         cv.Flip(frame, frame, 0)
     else:
Пример #5
0
def detect(image):
    image_size = cv.GetSize(image)

    # create grayscale version
    grayscale = cv.CreateImage(image_size, 8, 1)
    cv.CvtColor(image, grayscale, cv.BGR2GRAY)

    # create storage
    storage = cv.CreateMemStorage(0)
    cv.ClearMemStorage(storage)

    # equalize histogram
    cv.EqualizeHist(grayscale, grayscale)

    # detect objects
    cascade = cv.LoadHaarClassifierCascade('haarcascade_frontalface_alt.xml',
                                           cv.Size(1, 1))
    faces = cv.HaarDetectObjects(grayscale, cascade, storage, 1.2, 2,
                                 cv.HAAR_DO_CANNY_PRUNING, cv.Size(50, 50))

    if faces:
        print 'face detected!'
        for i in faces:
            cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                         cv.Point(int(i.x + i.width), int(i.y + i.height)),
                         cv.RGB(0, 255, 0), 3, 8, 0)

    # create windows
    cv.NamedWindow('Camera', cv.WINDOW_AUTOSIZE)

    # create capture device
    device = 0  # assume we want first device
    capture = cv.CreateCameraCapture(0)
    cv.SetCaptureProperty(capture, cv.CAP_PROP_FRAME_WIDTH, 640)
    cv.SetCaptureProperty(capture, cv.CAP_PROP_FRAME_HEIGHT, 480)

    # check if capture device is OK
    if not capture:
        print "Error opening capture device"
        sys.exit(1)

    while 1:
        # do forever

        # capture the current frame
        frame = cv.QueryFrame(capture)
        if frame is None:
            break

        # mirror
        cv.Flip(frame, None, 1)

        # face detection
        detect(frame)
        # display webcam image
        cv.ShowImage('Camera', frame)

        # handle events
        k = cv.WaitKey(10)

        if k == 0x1b:  # ESC
            print 'ESC pressed. Exiting ...'
            break