def main(): # Define internal combustion engine from Cessna Regression Aircraft vehicle = vehicle_setup() # Setup the modified constant speed version of the network vehicle = ICE_CS(vehicle) # Setup analyses and mission analyses = base_analysis(vehicle) analyses.finalize() mission = mission_setup(analyses) # evaluate results = mission.evaluate() P_truth = 53734.90184388173 mdot_truth = 0.004721271494265418 P = results.segments.cruise.state.conditions.propulsion.power[-1, 0] mdot = results.segments.cruise.state.conditions.weights.vehicle_mass_rate[ -1, 0] # Check the errors error = Data() error.P = np.max(np.abs((P - P_truth) / P_truth)) error.mdot = np.max(np.abs((mdot - mdot_truth) / mdot_truth)) print('Errors:') print(error) for k, v in list(error.items()): assert (np.abs(v) < 1e-6) return
def main(): # Define internal combustion engine from Cessna Regression Aircraft vehicle = vehicle_setup() # Setup analyses and mission analyses = base_analysis(vehicle) analyses.finalize() mission = mission_setup(analyses) # evaluate results = mission.evaluate() P_truth = 113274.953368933 mdot_truth = 0.008752685036290996 P = results.segments.cruise.state.conditions.propulsion.power[-1, 0] mdot = results.segments.cruise.state.conditions.weights.vehicle_mass_rate[ -1, 0] # Check the errors error = Data() error.P = np.max(np.abs((P - P_truth) / P_truth)) error.mdot = np.max(np.abs((mdot - mdot_truth) / mdot_truth)) print('Errors:') print(error) for k, v in list(error.items()): assert (np.abs(v) < 1e-6) return
def main(): # Define internal combustion engine from Cessna Regression Aircraft vehicle = vehicle_setup() # Setup analyses and mission analyses = base_analysis(vehicle) analyses.finalize() mission = mission_setup(analyses, vehicle) # evaluate results = mission.evaluate() h = 0.008757244664175039 P_truth = 54141.22575147851 mdot_truth = 0.004756972043006517 P = results.segments.cruise.state.conditions.propulsion.power[-1, 0] mdot = results.segments.cruise.state.conditions.weights.vehicle_mass_rate[ -1, 0] # Check the errors error = Data() error.P = np.max(np.abs((P - P_truth) / P_truth)) error.mdot = np.max(np.abs((mdot - mdot_truth) / mdot_truth)) print('Errors:') print(error) for k, v in list(error.items()): assert (np.abs(v) < 1e-6) return
def main(): # Define internal combustion engine from Cessna Regression Aircraft vehicle = vehicle_setup() ice_engine = vehicle.propulsors.internal_combustion.engine # Define conditions conditions = Data() conditions.freestream = Data() conditions.propulsion = Data() conditions.freestream.altitude = np.array([[8000]]) * Units.feet conditions.freestream.delta_ISA = 0.0 conditions.propulsion.combustion_engine_throttle = np.array([[0.8]]) ice_engine.power(conditions) # Truth values for propeller with airfoil geometry defined P_truth = 81367.49237183 P_sfc_truth = 0.52 FFR_truth = 0.007149134158858348 Q_truth = 287.7786359548746 P = ice_engine.outputs.power[0][0] P_sfc = ice_engine.outputs.power_specific_fuel_consumption FFR = ice_engine.outputs.fuel_flow_rate[0][0] Q = ice_engine.outputs.torque[0][0] # Store errors error = Data() error.P = np.max(np.abs(P - P_truth)) error.P_sfc = np.max(np.abs(P_sfc - P_sfc_truth)) error.FFR = np.max(np.abs(FFR - FFR_truth)) error.Q = np.max(np.abs(Q - Q_truth)) print('Errors:') print(error) for k, v in list(error.items()): assert (np.abs(v) < 1e-6) return