Пример #1
0
features_after_chapter_5 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features,
                                            cluster_features))

# datetime object containing current date and time
now3 = datetime.now()
# dd/mm/YY H:M:S
dt_string = now3.strftime("%d/%m/%Y %H:%M:%S")
print("date and time =", dt_string)

diff = now3 - now2
print('difference time', diff)

# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

features, ordered_features, ordered_scores = fs.forward_selection(
    N_FORWARD_SELECTION, train_X[features_after_chapter_5], train_y)
print(ordered_scores)
print(ordered_features)

DataViz.plot_xy(x=[range(1, N_FORWARD_SELECTION + 1)],
                y=[ordered_scores],
                xlabel='number of features',
                ylabel='accuracy')

# datetime object containing current date and time
now4 = datetime.now()
# dd/mm/YY H:M:S
dt_string = now4.strftime("%d/%m/%Y %H:%M:%S")
Пример #2
0
'''
print '#basic features: ', len(basic_features)
print '#PCA features: ', len(pca_features)
print '#time features: ', len(time_features)
print '#frequency features: ', len(freq_features)
cluster_features = ['cluster']
print '#cluster features: ', len(cluster_features)
'''
features_after_chapter_3 = list(set().union(basic_features, pca_features))
features_after_chapter_4 = list(set().union(basic_features, pca_features, time_features, freq_features))
features_after_chapter_5 = list(set().union(basic_features, pca_features, time_features, freq_features, cluster_features))


# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

'''
features, ordered_features, ordered_scores = fs.forward_selection(25, train_X[features_after_chapter_5], train_y)
print ordered_scores
print ordered_features

plot.plot(range(1, 26), ordered_scores)
plot.xlabel('number of features')
plot.ylabel('accuracy')
plot.show()

# Based on the plot we select the top 10 features.

selected_features = features_after_chapter_5
# ['acc_phone_y_freq_0.0_Hz_ws_40', 'press_phone_pressure_temp_mean_ws_120', 'gyr_phone_x_temp_std_ws_120',
def main():
    # Read the result from the previous chapter and convert the index to datetime
    try:
        dataset = pd.read_csv(DATA_PATH / DATASET_FILENAME, index_col=0)
        dataset.index = pd.to_datetime(dataset.index)
    except IOError as e:
        print(
            'File not found, try to run previous crowdsignals scripts first!')
        raise e

    # Create an instance of visualization class to plot the results
    DataViz = VisualizeDataset(__file__)

    # Consider the first task, namely the prediction of the label. Therefore create a single column with the categorical
    # attribute representing the class. Furthermore, use 70% of the data for training and the remaining 30% as an
    # independent test set. Select the sets based on stratified sampling and remove cases where the label is unknown.
    print('\n- - - Loading dataset - - -')
    prepare = PrepareDatasetForLearning()
    learner = ClassificationAlgorithms()
    evaluation = ClassificationEvaluation()
    train_X, test_X, train_y, test_y = prepare.split_single_dataset_classification(
        dataset, ['label'], 'like', 0.7, filter_data=True, temporal=False)

    print('Training set length is: ', len(train_X.index))
    print('Test set length is: ', len(test_X.index))

    # Select subsets of the features
    print('- - - Selecting subsets - - -')
    basic_features = [
        'acc_phone_x', 'acc_phone_y', 'acc_phone_z', 'acc_watch_x',
        'acc_watch_y', 'acc_watch_z', 'gyr_phone_x', 'gyr_phone_y',
        'gyr_phone_z', 'gyr_watch_x', 'gyr_watch_y', 'gyr_watch_z',
        'hr_watch_rate', 'light_phone_lux', 'mag_phone_x', 'mag_phone_y',
        'mag_phone_z', 'mag_watch_x', 'mag_watch_y', 'mag_watch_z',
        'press_phone_pressure'
    ]
    pca_features = [
        'pca_1', 'pca_2', 'pca_3', 'pca_4', 'pca_5', 'pca_6', 'pca_7'
    ]
    time_features = [name for name in dataset.columns if '_temp_' in name]
    freq_features = [
        name for name in dataset.columns
        if (('_freq' in name) or ('_pse' in name))
    ]
    cluster_features = ['cluster']
    print('#basic features: ', len(basic_features))
    print('#PCA features: ', len(pca_features))
    print('#time features: ', len(time_features))
    print('#frequency features: ', len(freq_features))
    print('#cluster features: ', len(cluster_features))
    features_after_chapter_3 = list(set().union(basic_features, pca_features))
    features_after_chapter_4 = list(set().union(features_after_chapter_3,
                                                time_features, freq_features))
    features_after_chapter_5 = list(set().union(features_after_chapter_4,
                                                cluster_features))

    if FLAGS.mode == 'selection' or FLAGS.mode == 'all':
        # First, consider the performance over a selection of features
        N_FORWARD_SELECTION = FLAGS.nfeatures
        fs = FeatureSelectionClassification()
        print('\n- - - Running feature selection - - -')
        features, ordered_features, ordered_scores = fs.forward_selection(
            max_features=N_FORWARD_SELECTION,
            X_train=train_X[features_after_chapter_5],
            y_train=train_y)
        DataViz.plot_xy(x=[range(1, N_FORWARD_SELECTION + 1)],
                        y=[ordered_scores],
                        xlabel='number of features',
                        ylabel='accuracy')

    # Select the most important features (based on python2 features)
    selected_features = [
        'acc_phone_y_freq_0.0_Hz_ws_40',
        'press_phone_pressure_temp_mean_ws_120', 'gyr_phone_x_temp_std_ws_120',
        'mag_watch_y_pse', 'mag_phone_z_max_freq', 'gyr_watch_y_freq_weighted',
        'gyr_phone_y_freq_1.0_Hz_ws_40', 'acc_phone_x_freq_1.9_Hz_ws_40',
        'mag_watch_z_freq_0.9_Hz_ws_40', 'acc_watch_y_freq_0.5_Hz_ws_40'
    ]

    if FLAGS.mode == 'regularization' or FLAGS.mode == 'all':
        print('\n- - - Running regularization and model complexity test - - -')
        # Study the impact of regularization and model complexity: does regularization prevent overfitting?
        # Due to runtime constraints run the experiment 3 times, for even more robust data increase the repetitions
        N_REPEATS_NN = FLAGS.nnrepeat
        reg_parameters = [0.0001, 0.001, 0.01, 0.1, 1, 10]
        performance_training = []
        performance_test = []

        for reg_param in reg_parameters:
            performance_tr = 0
            performance_te = 0
            for i in range(0, N_REPEATS_NN):
                class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.feedforward_neural_network(
                    train_X,
                    train_y,
                    test_X,
                    hidden_layer_sizes=(250, ),
                    alpha=reg_param,
                    max_iter=500,
                    gridsearch=False)
                performance_tr += evaluation.accuracy(train_y, class_train_y)
                performance_te += evaluation.accuracy(test_y, class_test_y)
            performance_training.append(performance_tr / N_REPEATS_NN)
            performance_test.append(performance_te / N_REPEATS_NN)
        DataViz.plot_xy(x=[reg_parameters, reg_parameters],
                        y=[performance_training, performance_test],
                        method='semilogx',
                        xlabel='regularization parameter value',
                        ylabel='accuracy',
                        ylim=[0.95, 1.01],
                        names=['training', 'test'],
                        line_styles=['r-', 'b:'])

    if FLAGS.mode == 'tree' or FLAGS.mode == 'all':
        print('\n- - - Running leaf size test of decision tree - - -')
        # Consider the influence of certain parameter settings for the tree model. (very related to the
        # regularization) and study the impact on performance.
        leaf_settings = [1, 2, 5, 10]
        performance_training = []
        performance_test = []

        for no_points_leaf in leaf_settings:
            class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.decision_tree(
                train_X[selected_features],
                train_y,
                test_X[selected_features],
                min_samples_leaf=no_points_leaf,
                gridsearch=False,
                print_model_details=False)

            performance_training.append(
                evaluation.accuracy(train_y, class_train_y))
            performance_test.append(evaluation.accuracy(test_y, class_test_y))

        DataViz.plot_xy(x=[leaf_settings, leaf_settings],
                        y=[performance_training, performance_test],
                        xlabel='Minimum number of points per leaf',
                        ylabel='Accuracy',
                        names=['training', 'test'],
                        line_styles=['r-', 'b:'])

    if FLAGS.mode == 'overall' or FLAGS.mode == 'all':
        print(
            '\n- - - Running test of all different classification algorithms - - -'
        )
        # Perform grid searches over the most important parameters and do so by means of cross validation upon the
        # training set
        possible_feature_sets = [
            basic_features, features_after_chapter_3, features_after_chapter_4,
            features_after_chapter_5, selected_features
        ]
        feature_names = [
            'initial set', 'Chapter 3', 'Chapter 4', 'Chapter 5',
            'Selected features'
        ]
        N_KCV_REPEATS = FLAGS.kcvrepeat

        scores_over_all_algs = []

        for i in range(0, len(possible_feature_sets)):
            selected_train_X = train_X[possible_feature_sets[i]]
            selected_test_X = test_X[possible_feature_sets[i]]

            # First run non deterministic classifiers a number of times to average their score
            performance_tr_nn, performance_te_nn = 0, 0
            performance_tr_rf, performance_te_rf = 0, 0
            performance_tr_svm, performance_te_svm = 0, 0

            for repeat in range(0, N_KCV_REPEATS):
                print(
                    f'Training NeuralNetwork run {repeat + 1} / {N_KCV_REPEATS}, featureset is {feature_names[i]} ... '
                )
                class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.feedforward_neural_network(
                    selected_train_X,
                    train_y,
                    selected_test_X,
                    gridsearch=True)

                print(
                    f'Training RandomForest run {repeat + 1} / {N_KCV_REPEATS}, featureset is {feature_names[i]} ... '
                )
                performance_tr_nn += evaluation.accuracy(
                    train_y, class_train_y)
                performance_te_nn += evaluation.accuracy(test_y, class_test_y)

                class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.random_forest(
                    selected_train_X,
                    train_y,
                    selected_test_X,
                    gridsearch=True)
                performance_tr_rf += evaluation.accuracy(
                    train_y, class_train_y)
                performance_te_rf += evaluation.accuracy(test_y, class_test_y)

                print(
                    f'Training SVM run {repeat + 1} / {N_KCV_REPEATS}, featureset is {feature_names[i]} ...'
                )

                class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner. \
                    support_vector_machine_with_kernel(selected_train_X, train_y, selected_test_X, gridsearch=True)
                performance_tr_svm += evaluation.accuracy(
                    train_y, class_train_y)
                performance_te_svm += evaluation.accuracy(test_y, class_test_y)

            overall_performance_tr_nn = performance_tr_nn / N_KCV_REPEATS
            overall_performance_te_nn = performance_te_nn / N_KCV_REPEATS
            overall_performance_tr_rf = performance_tr_rf / N_KCV_REPEATS
            overall_performance_te_rf = performance_te_rf / N_KCV_REPEATS
            overall_performance_tr_svm = performance_tr_svm / N_KCV_REPEATS
            overall_performance_te_svm = performance_te_svm / N_KCV_REPEATS

            # Run deterministic classifiers:
            print("Deterministic Classifiers:")

            print(
                f'Training Nearest Neighbor run 1 / 1, featureset {feature_names[i]}'
            )
            class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.k_nearest_neighbor(
                selected_train_X, train_y, selected_test_X, gridsearch=True)
            performance_tr_knn = evaluation.accuracy(train_y, class_train_y)
            performance_te_knn = evaluation.accuracy(test_y, class_test_y)

            print(
                f'Training Decision Tree run 1 / 1  featureset {feature_names[i]}'
            )
            class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.decision_tree(
                selected_train_X, train_y, selected_test_X, gridsearch=True)
            performance_tr_dt = evaluation.accuracy(train_y, class_train_y)
            performance_te_dt = evaluation.accuracy(test_y, class_test_y)

            print(
                f'Training Naive Bayes run 1/1 featureset {feature_names[i]}')
            class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.naive_bayes(
                selected_train_X, train_y, selected_test_X)
            performance_tr_nb = evaluation.accuracy(train_y, class_train_y)
            performance_te_nb = evaluation.accuracy(test_y, class_test_y)

            scores_with_sd = util. \
                print_table_row_performances(feature_names[i], len(selected_train_X.index),
                                             len(selected_test_X.index), [
                                                 (overall_performance_tr_nn, overall_performance_te_nn),
                                                 (overall_performance_tr_rf, overall_performance_te_rf),
                                                 (overall_performance_tr_svm, overall_performance_te_svm),
                                                 (performance_tr_knn, performance_te_knn),
                                                 (performance_tr_knn, performance_te_knn),
                                                 (performance_tr_dt, performance_te_dt),
                                                 (performance_tr_nb, performance_te_nb)])
            scores_over_all_algs.append(scores_with_sd)

        DataViz.plot_performances_classification(
            ['NN', 'RF', 'SVM', 'KNN', 'DT', 'NB'], feature_names,
            scores_over_all_algs)

    if FLAGS.mode == 'detail' or FLAGS.mode == 'all':
        print(
            '\n- - - Running detail test of promising classification algorithms - - -'
        )
        # Study two promising ones in more detail, namely decision tree and random forest algorithm
        learner.decision_tree(train_X[selected_features],
                              train_y,
                              test_X[selected_features],
                              gridsearch=True,
                              print_model_details=True,
                              export_tree_path=EXPORT_TREE_PATH)

        class_train_y, class_test_y, class_train_prob_y, class_test_prob_y = learner.random_forest(
            train_X[selected_features],
            train_y,
            test_X[selected_features],
            gridsearch=True,
            print_model_details=True)

        test_cm = evaluation.confusion_matrix(test_y, class_test_y,
                                              class_train_prob_y.columns)
        DataViz.plot_confusion_matrix(test_cm,
                                      class_train_prob_y.columns,
                                      normalize=False)
Пример #4
0
time_features = [name for name in dataset.columns if '_temp_' in name]
freq_features = [
    name for name in dataset.columns if (('_freq' in name) or ('_pse' in name))
]
print '#basic features: ', len(basic_features)
print '#PCA features: ', len(pca_features)
print '#time features: ', len(time_features)
print '#frequency features: ', len(freq_features)
cluster_features = ['cluster']
print '#cluster features: ', len(cluster_features)
features_after_chapter_3 = list(set().union(basic_features, pca_features))
features_after_chapter_4 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features))
features_after_chapter_5 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features,
                                            cluster_features))

# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

#features, ordered_features, ordered_scores = fs.forward_selection(15, train_X[list(set().union(basic_features, pca_features, time_features))], train_y)
#print ordered_scores
#print ordered_features
#print features

features = fs.backward_selection(
    15, train_X[list(set().union(basic_features, pca_features,
                                 time_features))], train_y)
print features
print '#frequency features: ', len(freq_features)
cluster_features = ['cluster']
print '#cluster features: ', len(cluster_features)
features_after_outliers_and_imputation = list(set().union(
    basic_features, pca_features))
features_after_domain_features = list(set().union(basic_features, pca_features,
                                                  time_features,
                                                  freq_features))
features_after_cluster_features = list(set().union(basic_features,
                                                   pca_features, time_features,
                                                   freq_features,
                                                   cluster_features))

# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

features, ordered_features, ordered_scores = fs.ax_forward_selection_naive_bayes(
    20, train_X[features_after_chapter_5], train_y)
#features, ordered_features, ordered_scores = fs.backward_selection(50, train_X[features_after_chapter_5], train_y)

# features, ordered_features, ordered_scores = fs.forward_selection(20, train_X[features_after_chapter_5], train_y)

print ordered_scores
print ordered_features

plot.plot(range(1, 21), ordered_scores)
plot.xlabel('number of features')
plot.ylabel('accuracy')
plot.show()
print('#basic features: ', len(basic_features))
print('#PCA features: ', len(pca_features))
print('#time features: ', len(time_features))
print('#frequency features: ', len(freq_features))
cluster_features = ['cluster']
print('#cluster features: ', len(cluster_features))
features_after_chapter_3 = list(set().union(basic_features, pca_features))
features_after_chapter_4 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features))
features_after_chapter_5 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features,
                                            cluster_features))

# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

# features, ordered_features, ordered_scores = fs.forward_selection(N_FORWARD_SELECTION,
#                                                                   train_X[features_after_chapter_5], train_y)
# print(ordered_scores)
# print(ordered_features)
#
# DataViz.plot_xy(x=[range(1, N_FORWARD_SELECTION + 1)], y=[ordered_scores],
#                 xlabel='number of features', ylabel='accuracy')

# Based on the plot we select the top 10 features (note: slightly different compared to Python 2, we use
# those feartures here).

selected_features = [
    'rotationRate.z_temp_std_ws_180',
    'userAcceleration.z_temp_std_ws_180',
Пример #7
0
    'gyr_phone_z', 'mag_phone_x', 'mag_phone_y', 'mag_phone_z',
    'press_phone_Pressure'
]
pca_features = ['pca_1', 'pca_2', 'pca_3', 'pca_4']
time_features = [name for name in dataset.columns if '_temp_' in name]
freq_features = [
    name for name in dataset.columns if (('_freq' in name) or ('_pse' in name))
]
print '#basic features: ', len(basic_features)
print '#PCA features: ', len(pca_features)
print '#time features: ', len(time_features)
print '#frequency features: ', len(freq_features)
cluster_features = ['cluster']
print '#cluster features: ', len(cluster_features)
features_after_chapter_3 = list(set().union(basic_features, pca_features))
features_after_chapter_4 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features))
features_after_chapter_5 = list(set().union(basic_features, pca_features,
                                            time_features, freq_features,
                                            cluster_features))

# First, let us consider the performance over a selection of features:

fs = FeatureSelectionClassification()

# features, ordered_features, ordered_scores = fs.forward_selection(50, train_X[features_after_chapter_5], train_y)
features = fs.backward_selection(10, train_X[features_after_chapter_5],
                                 train_y)
print features

exit(0)