Пример #1
0
def evaluate(reg):
    tikhonov_kernel = kernel + 1e6
    precondioner = np.abs(np.divide(1, tikhonov_kernel))
    precondioner /= precondioner.max()
    tikhonov = np.divide(complex_data, tikhonov_kernel)
    reco = np.copy(tikhonov)

    # The scales produce gradients of order 1
    ADVERSARIAL_SCALE = (96**(-0.5))
    DATA_SCALE = 1 / (10 * 96**3)

    IMAGING_SCALE = 96

    for k in range(70):
        STEP_SIZE = 1.0 * 1 / np.sqrt(1 + k / 20)

        gradient = regularizer.evaluate(reco)
        g1 = reg * gradient * ADVERSARIAL_SCALE
        #     print(l2(gradient))
        g2 = DATA_SCALE * (np.multiply(reco, tikhonov_kernel) - complex_data)

        g = g1 + g2
        #     reco = reco - STEP_SIZE * 0.02 * g
        reco = reco - STEP_SIZE * precondioner * g

        reco = np.fft.rfftn(np.maximum(0, np.fft.irfftn(reco)))
    return l2_gt(irfft(reco))
Пример #2
0
def get_image(noise_level, method, data_dict, eval_data):
    data_list = data_dict[noise_level][method]
    adv_path = random.choice(data_list)

    if method == 'div':
        #        print('adv_path', adv_path)
        #        raise Exception
        star_file = load_star(adv_path)
        with mrcfile.open(
                cleanStarPath(
                    adv_path, star_file['external_reconstruct_general']
                    ['rlnExtReconsDataReal'])) as mrc:
            data_real = mrc.data
        with mrcfile.open(
                cleanStarPath(
                    adv_path, star_file['external_reconstruct_general']
                    ['rlnExtReconsDataImag'])) as mrc:
            data_im = mrc.data
        with mrcfile.open(
                cleanStarPath(
                    adv_path, star_file['external_reconstruct_general']
                    ['rlnExtReconsWeight'])) as mrc:
            kernel = mrc.data
        adv = np.divide(data_real + 1j * data_im, kernel + 1e-3)
        adv = irfft(adv)
    else:
        with mrcfile.open(adv_path) as mrc:
            adv = mrc.data

    with mrcfile.open(locate_gt(adv_path, noise_level,
                                eval_data=eval_data)) as mrc:
        gt = mrc.data


#    print(locate_gt(adv_path, eval_data=eval_data))
#    print(star_file)
#    raise Exception
    return gt, adv
#reco = np.fft.rfftn(np.maximum(0, np.fft.irfftn(reco)))

# The scales produce gradients of order 1
#ADVERSARIAL_SCALE=(96**(-0.5))
#DATA_SCALE=1/(10*96**3)

#IMAGING_SCALE=96

#for k in range(70):
#    STEP_SIZE=1.0 * 1 / np.sqrt(1 + k / 20)
    
#    gradient = regularizer.evaluate(reco)
#    g1 = ADVERSARIAL_REGULARIZATION * gradient * ADVERSARIAL_SCALE
#     print(l2(gradient))
#    g2 = DATA_SCALE*(np.multiply(reco, tikhonov_kernel) - complex_data)
    
#    g = g1 + g2
#     reco = reco - STEP_SIZE * 0.02 * g
#    reco = reco - STEP_SIZE * precondioner * g
    
#    reco = np.fft.rfftn(np.maximum(0, np.fft.irfftn(reco)))

# write final reconstruction to file
reco_real = irfft(reco)


with mrcfile.new(target_path, overwrite=True) as mrc:
    mrc.set_data(reco_real.astype(np.float32))
    mrc.voxel_size = 1.5
Пример #4
0
def vis(data, fourier=True):
    if fourier:
        data = irfft(data, scaling=NUM_VOX**2)
    slice_n = int(data.shape[0] // 2)
    plt.imshow(IMAGING_SCALE * data.squeeze()[..., slice_n])
Пример #5
0
file = load_star(path)

with mrcfile.open(
        file['external_reconstruct_general']['rlnExtReconsDataReal']) as mrc:
    data_real = mrc.data.copy()
with mrcfile.open(
        file['external_reconstruct_general']['rlnExtReconsDataImag']) as mrc:
    data_im = mrc.data.copy()
with mrcfile.open(
        file['external_reconstruct_general']['rlnExtReconsWeight']) as mrc:
    kernel = mrc.data.copy()

complex_data = data_real + 1j * data_im

#### Rescaling kernels
complex_data_norm = np.mean(irfft(complex_data, scaling=NUM_VOX**2))

complex_data /= complex_data_norm
kernel /= complex_data_norm

tikhonov_kernel = kernel + TIKHONOV_REGULARIZATION
print(np.max(np.abs(kernel)), np.min(np.abs(kernel)))
print(np.max(np.abs(tikhonov_kernel)), np.min(np.abs(tikhonov_kernel)))
print(np.mean(np.abs(tikhonov_kernel)), np.mean(np.abs(kernel)))

tk_ini = np.divide(complex_data, tikhonov_kernel)
tk_pos = np.fft.rfftn(np.maximum(0, np.fft.irfftn(tk_ini)))

unreg_ini = np.divide(complex_data, kernel + TIKHONOV_REGULARIZATION // 100.0)

#print(l2(tk_ini), l2(unreg_ini), l2(naive_ini))
Пример #6
0
        file['external_reconstruct_general']['rlnExtReconsDataReal']) as mrc:
    data_real = mrc.data.copy()
with mrcfile.open(
        file['external_reconstruct_general']['rlnExtReconsDataImag']) as mrc:
    data_im = mrc.data.copy()
with mrcfile.open(
        file['external_reconstruct_general']['rlnExtReconsWeight']) as mrc:
    kernel = mrc.data.copy()

target_path = file['external_reconstruct_general']['rlnExtReconsResult']

regularizer = AdversarialRegulariser(SAVES_PATH)

complex_data = data_real + 1j * data_im

complex_data_norm = np.mean(irfft(complex_data, scaling=NUM_VOX**2))
complex_data /= complex_data_norm
kernel /= complex_data_norm
tikhonov_kernel = kernel + TIKHONOV_REGULARIZATION

#precond = np.abs(np.divide(1, tikhonov_kernel))
#precond /= precond.max()
precond = 1
tikhonov = np.divide(complex_data, tikhonov_kernel)
reco = np.copy(tikhonov)

for k in range(150):
    STEP_SIZE = STEP_SIZE_NOMINAL / np.sqrt(1 + k / 20)

    ###############
    # DOWNSAMPLING
def vis(data, fourier=True, SCALE=100):
    if fourier:
        data = irfft(data)
    plt.imshow(SCALE * data.squeeze()[..., 45])
        init = np.divide(complex_data, tikhonov_kernel)
    elif INI_POINT == 'classical':
        init = classical_reco.copy()
        init = rfft(init)
    if POSITIVITY:
        init = np.fft.rfftn(np.maximum(0, np.fft.irfftn(init)))
    reco = init.copy()

    print('####################')
    print(PDB_ID, NOISE_LEVEL, IT, INI_POINT, AR_REG_TYPE, POSITIVITY,
          NUM_GRAD_STEPS, STEP_SIZE_NOMINAL)
    print('####################')
    #    if EVAL_METRIC == 'masked_FSC':
    #        print('INIT FSC 0.5 crossing: ', fscPointFiveCrossing(irfft(init), gt_path))
    if EVAL_METRIC == 'masked_L2':
        print('INIT L2 (masked): ', masked_L2(irfft(init), gt))
    elif EVAL_METRIC == 'L2':
        print('INIT L2: ', L2(irfft(init), gt))
    elif EVAL_METRIC == 'L2_and_SSIM':
        print('INIT L2: ', L2(irfft(init), gt), '. INIT SSIM: ',
              ssim(irfft(init), gt, win_size=WIN_SIZE))

    if PLOT:
        plt.figure(0, figsize=(10, 3))
        plt.subplot(121)
        vis(gt, fourier=False)
        plt.colorbar()
        plt.subplot(122)
        vis(init)
        plt.colorbar()
        plt.show()
Пример #9
0
def vis(data, fourier=True):
    if fourier:
        data = irfft(data)
    plt.imshow(data.squeeze()[..., 45])