Пример #1
0
 def AddOutLayer(self, cNeurons):
     layer = ntl.NetLayer()
     cIn = len(self.layers[len(self.layers) - 1].neurons) + 1
     for i in range(cNeurons):
         layer.addNeuron(cIn)
     print("Agregando capa de salida...")
     self.layers.append(layer)
Пример #2
0
 def neuRandom(self, cIn, cLayers, cNeurons):
     for i in range(cLayers):
         layer = ntl.NetLayer()
         self.layers.append(layer)
         for j in range(0, cNeurons):
             self.layers[i].addNeuron(cIn + 1)
             if i > 0:
                 cIn = len(self.layers[i - 1].neurons)
Пример #3
0
def load(file):
    #instanciamos la red
    neuralNet = nn.NeuralNetwork()
    with open(file) as oFile:
        #leemos el archivo en formato JSON
        jsonF = json.load(oFile)
        #Iteramos por capas y neuronas
        for layer in jsonF['capas']:
            nLayer = ntl.NetLayer()
            for neuron in layer['neuronas']:
                w = neuron['pesos']
                #Añadimos la neurona como arreglos [baias, arregloPesos, g(n), delta)
                nLayer.neurons.append([1, w, 0, 0])
            #Añadimos la capa con las neuronas a la red
            neuralNet.layers = np.append(neuralNet.layers, nLayer)
        return neuralNet
Пример #4
0
def load(file):
    neuralNet = nn.NeuralNetwork()
    with open(file) as oFile:
        jsonF = json.load(oFile)
        for layer in jsonF['capas']:
            nLayer = ntl.NetLayer()
            for neuron in layer['neuronas']:
                print(neuron['pesos'])
                w = neuron['pesos']
                nLayer.neurons.append([1, w, 0, 0])
            neuralNet.layers = np.append(neuralNet.layers, nLayer)

    for i in range(0, 2):
        for j in range(0, 2):
            vector = [i, j]
            neuralNet.evaluar(vector)
            neuralNet.printG(vector)
Пример #5
0
 def evaluar(self, vector):
     ban = 0
     before = ntl.NetLayer()
     for layer in self.layers:
         for neuron in layer.neurons:
             x = 0.0
             if ban != 0:
                 x = neuron[0] * neuron[1][0]
                 for i in range(len(before.neurons)):
                     x += neuron[1][i + 1] * before.neurons[i][2]
             else:
                 x = neuron[0] * neuron[1][0]
                 for i in range(len(vector)):
                     x += neuron[1][i + 1] * vector[i]
             neuron[2] = layer.sigmoide(x)
         ban = 1
         before = layer
Пример #6
0
 def AddHiddenLayer(self, cNeurons, cIn):
     layer = ntl.NetLayer()
     for i in range(cNeurons):
         layer.addNeuron(cIn + 1)
     print("Agregando Capa oculta...")
     self.layers.append(layer)